Answer:
The probability is 0.7449
Explanation:
Given
---- total
--- selection
![Genre =\{Rap(4), Country (5), Heavy\ metal (3)\}](https://img.qammunity.org/2022/formulas/mathematics/college/kgowzi1u27pi9d488nw0x1dz972ihr8lzq.png)
Required
Probability of buying at least 1 of each genre
First, we calculate the total possible selection.
To select 5 CDs from a total of 12, we use:
![^nC_r = (n!)/((n - r)!r!)](https://img.qammunity.org/2022/formulas/mathematics/college/r9b5ikofppaq7dua4autjpozd826qgmpnk.png)
![^(12)C_5 = (12!)/((12 - 5)!5!)](https://img.qammunity.org/2022/formulas/mathematics/college/2uhxayr06c63rldzs0bx4tscykbr59i35m.png)
![^(12)C_5 = (12!)/(7!5!)](https://img.qammunity.org/2022/formulas/mathematics/college/eqtzs27gy9j1suxqej37qwpeudktpyjrpm.png)
Expand
![^(12)C_5 = (12*11*10*9*8*7!)/(7!*5*4*3*2*1)](https://img.qammunity.org/2022/formulas/mathematics/college/2uehb5z46jlcjzga5ph00xpcajugcytwm3.png)
![^(12)C_5 = (12*11*10*9*8)/(5*4*3*2*1)](https://img.qammunity.org/2022/formulas/mathematics/college/vi3c13ty6zy64ni0wc6cn3y0nvoa2oz9ak.png)
![^(12)C_5 = (95040)/(120)](https://img.qammunity.org/2022/formulas/mathematics/college/i1cz6l50otwvbrmniqx7lc6grapvf5bmev.png)
![^(12)C_5 = 792](https://img.qammunity.org/2022/formulas/mathematics/college/os3gbq6vezjby553ajjvhgxs351nd6ym9r.png)
So, the total selection is:
![Total = 792](https://img.qammunity.org/2022/formulas/mathematics/college/u5twzn4qx5x986ubgk38i3bsqvm6ztlh3x.png)
To select at least 1 from each genre, there are 6 possible scenarios.
And they are:
![\begin{array}{ccc}{Heavy\ Metal (3)} & {Rap (4)} & {Country(5)} & {3} & {1} & {1} & 2 & {1} & {2} & {2} & {2} & {1}& {1} & {2} & {2}& {1} & {3} & {1}& {1} & {1} & {3} \ \end{array}](https://img.qammunity.org/2022/formulas/mathematics/college/scuvdo3kazos9xcqh1zrn5byu4xuwqlqqn.png)
The possible selections for the given scenario is:
![Possible = ^3C_3* ^4C_1 * ^5C_1 +^3C_2* ^4C_1 * ^5C_2 +^3C_2* ^4C_2 * ^5C_1 +^3C_1* ^4C_2 * ^5C_2 +^3C_1* ^4C_3 * ^5C_1 +^3C_1* ^4C_1 * ^5C_3](https://img.qammunity.org/2022/formulas/mathematics/college/hmn6e7ex1lh4hdi9wz62d0k2r4nkp60dpf.png)
Using a calculator, we have:
![Possible = 1*4*5 +3*4*10 +3*6*5 +3*6*10+3*4*5+3*4*10](https://img.qammunity.org/2022/formulas/mathematics/college/987lh3756rl567u4v8a03j3rvdxb96g5io.png)
![Possible= 20 +120 +90 +180+60+120](https://img.qammunity.org/2022/formulas/mathematics/college/glaxtq75l8m9jzu6cj0l1yzp74olo1n785.png)
![Possible = 590](https://img.qammunity.org/2022/formulas/mathematics/college/em5szotkarpu34murtapvgoyvcfru4593o.png)
The probability is then calculated using:
![Pr = (Possible)/(Total)](https://img.qammunity.org/2022/formulas/mathematics/college/uhg7vrr690g3z5ya9vxrz202vfaks789dw.png)
![Pr = (590)/(792)](https://img.qammunity.org/2022/formulas/mathematics/college/xnrxvu2avs8culoax1y2ic7f2hlagukz7d.png)
![Pr = 0.7449](https://img.qammunity.org/2022/formulas/mathematics/college/rxm95a6utq8u5l5vsfgzpm8ir38pxogwh8.png)