58.6k views
1 vote
Given log5 3=0.6826 and log5 8=1.2920, evaluate the expressions

Please help!?

Given log5 3=0.6826 and log5 8=1.2920, evaluate the expressions Please help!?-example-1
User Naomi K
by
8.3k points

2 Answers

4 votes

Answer:

a) 1.3652

b) 1.3906

Explanation:

a) log5 9 = log5 3² = 2log5 3 = 2(0.6826) = 1.3652

b) log5 75/8 = log5 75 - log5 8 = log5 3×25 - log5 8=

log5 3 + log5 5² - log5 8 = 0.6826 + 2 - 1.2920 = 0.6826 + 0.708 = 1.3906

User Ruchira Randana
by
8.2k points
0 votes


\begin{array}{llll} \textit{Logarithm of factors} \\\\ \log_a(xy)\implies \log_a(x)+\log_a(y) \end{array} ~\hspace{4em} \begin{array}{llll} \textit{Logarithm of rationals} \\\\ \log_a\left( (x)/(y)\right)\implies \log_a(x)-\log_a(y) \end{array} \\\\\\ \begin{array}{llll} \textit{Logarithm of exponentials} \\\\ \log_a\left( x^b \right)\implies b\cdot \log_a(x) \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}


\log_5(9)\implies \log_5(3^2)\implies 2\log(3)\implies 2(0.6826)~~ \approx~~1.3652 \\\\[-0.35em] ~\dotfill\\\\ \log_5\left( \cfrac{75}{8} \right)\implies \log_5(75)~~ - ~~\log_5(8)\implies \log_5\left( \cfrac{75}{8} \right) \\\\\\ \log_5(3\cdot 5^2)~~ - ~~\log_5(8)\implies [\log_5(3)~~ + ~~\log_5(5^2)]~~ - ~~\log_5(8) \\\\\\ \log_5(3)~~ + ~~2\log_5(5)~~ - ~~\log_5(8) \\\\\\ 0.6826~~ + ~~2~~ - ~~1.2920\implies 1.3906

User Bon Andre Opina
by
8.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories