Answer:
![\sin(x) = \sum\limit^(\infty)_(n = 0) (1)/(\sqrt 2)((-1)^(n(n+1)/2))/(n!)(x - (3\pi)/(4))^n](https://img.qammunity.org/2022/formulas/mathematics/college/1zlmpl8qiwaqdkmn39brdxy914t2av2ezx.png)
Explanation:
Given
![f(x) = \sin x\\](https://img.qammunity.org/2022/formulas/mathematics/college/aoigb3v9cex4sfh4jqrwamepbj8inntcwv.png)
![c = (3\pi)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/o4simmd3lw0x72raewf4qu99sv1w7d98um.png)
Required
Find the Taylor series
The Taylor series of a function is defines as:
![f(x) = f(c) + f'(c)(x -c) + (f](https://img.qammunity.org/2022/formulas/mathematics/college/jckasl5vyg7puh916dy3squkpntqocilq8.png)
We have:
![c = (3\pi)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/o4simmd3lw0x72raewf4qu99sv1w7d98um.png)
![f(x) = \sin x\\](https://img.qammunity.org/2022/formulas/mathematics/college/aoigb3v9cex4sfh4jqrwamepbj8inntcwv.png)
![f(c) = \sin(c)](https://img.qammunity.org/2022/formulas/mathematics/college/13mwgsfl0l0yyuta3bc8kjugeka4a1zv2r.png)
![f(c) = \sin((3\pi)/(4))](https://img.qammunity.org/2022/formulas/mathematics/college/bbyhowv183w2oi8qtd4dhncxyvqaxstf6s.png)
This gives:
![f(c) = (1)/(\sqrt 2)](https://img.qammunity.org/2022/formulas/mathematics/college/myqz7qih2665fyowx5qgucsp2c2jiomlc5.png)
We have:
![f(c) = \sin((3\pi)/(4))](https://img.qammunity.org/2022/formulas/mathematics/college/bbyhowv183w2oi8qtd4dhncxyvqaxstf6s.png)
Differentiate
![f'(c) = \cos((3\pi)/(4))](https://img.qammunity.org/2022/formulas/mathematics/college/ip16ng36s4uja20wxq7cbipb095iooqimw.png)
This gives:
![f'(c) = -(1)/(\sqrt 2)](https://img.qammunity.org/2022/formulas/mathematics/college/prks25bkn3hc1hynzawhcgkiybndk7hcud.png)
We have:
![f'(c) = \cos((3\pi)/(4))](https://img.qammunity.org/2022/formulas/mathematics/college/ip16ng36s4uja20wxq7cbipb095iooqimw.png)
Differentiate
![f](https://img.qammunity.org/2022/formulas/mathematics/college/iscdu940dkp3mebezklbjn1co3hpar0soi.png)
This gives:
![f](https://img.qammunity.org/2022/formulas/mathematics/college/kzc820jh97bomf74wkouk6isr9ajefl0qu.png)
We have:
![f](https://img.qammunity.org/2022/formulas/mathematics/college/iscdu940dkp3mebezklbjn1co3hpar0soi.png)
Differentiate
![f](https://img.qammunity.org/2022/formulas/mathematics/college/lfhun94jdtcok7trdkhv1tv5nj4qi079k7.png)
This gives:
![f](https://img.qammunity.org/2022/formulas/mathematics/college/w7nip85ijqtzt4ny06g6qv91g3yrpjhll6.png)
![f](https://img.qammunity.org/2022/formulas/mathematics/college/4xto4eph12d7qui8nijft54o1a1odq5osa.png)
So, we have:
![f(c) = (1)/(\sqrt 2)](https://img.qammunity.org/2022/formulas/mathematics/college/myqz7qih2665fyowx5qgucsp2c2jiomlc5.png)
![f'(c) = -(1)/(\sqrt 2)](https://img.qammunity.org/2022/formulas/mathematics/college/prks25bkn3hc1hynzawhcgkiybndk7hcud.png)
![f](https://img.qammunity.org/2022/formulas/mathematics/college/kzc820jh97bomf74wkouk6isr9ajefl0qu.png)
![f](https://img.qammunity.org/2022/formulas/mathematics/college/4xto4eph12d7qui8nijft54o1a1odq5osa.png)
![f(x) = f(c) + f'(c)(x -c) + (f](https://img.qammunity.org/2022/formulas/mathematics/college/jckasl5vyg7puh916dy3squkpntqocilq8.png)
becomes
![f(x) = (1)/(\sqrt 2) - (1)/(\sqrt 2)(x - (3\pi)/(4)) -(1/\sqrt 2)/(2!)(x - (3\pi)/(4))^2 +(1/\sqrt 2)/(3!)(x - (3\pi)/(4))^3 + ... +(f^n(c))/(n!)(x - (3\pi)/(4))^n](https://img.qammunity.org/2022/formulas/mathematics/college/1mbq4w57clxoslwiqrl6rp95pwkdfqxbmd.png)
Rewrite as:
![f(x) = (1)/(\sqrt 2) + ((-1))/(\sqrt 2)(x - (3\pi)/(4)) +((-1)/\sqrt 2)/(2!)(x - (3\pi)/(4))^2 +((-1)^2/\sqrt 2)/(3!)(x - (3\pi)/(4))^3 + ... +(f^n(c))/(n!)(x - (3\pi)/(4))^n](https://img.qammunity.org/2022/formulas/mathematics/college/ubnghyxqdnr3kl707nuch2b4psrhp8rf70.png)
Generally, the expression becomes
![f(x) = \sum\limit^(\infty)_(n = 0) (1)/(\sqrt 2)((-1)^(n(n+1)/2))/(n!)(x - (3\pi)/(4))^n](https://img.qammunity.org/2022/formulas/mathematics/college/pyi249x4dxr7y5yjgogg1qdl3qq81522es.png)
Hence:
![\sin(x) = \sum\limit^(\infty)_(n = 0) (1)/(\sqrt 2)((-1)^(n(n+1)/2))/(n!)(x - (3\pi)/(4))^n](https://img.qammunity.org/2022/formulas/mathematics/college/1zlmpl8qiwaqdkmn39brdxy914t2av2ezx.png)