43.3k views
2 votes
a right triangle has one leg that’s 5 units long and a hypotenuse that’s 8 units long. how long is the other leg?

User Bijendra
by
8.5k points

2 Answers

3 votes

We are given that , in a right angled triangle the hypotenuse is 8 units and it's one leg is 5 units . And we need to find the another leg . So , here Pythagoras theorem will be very helpful for us which states that in any Right Triangle , the sum of square of it's two sides ( base and perpendicular or two legs ) is equal to the square of it's largest side ( Hypotenuse )

Now , let's assume that the other leg be x , so now by Pythagoras theorem ;


{:\implies \quad \sf x^(2)+5^(2)=8^(2)}


{:\implies \quad \sf x^(2)+25=64}


{:\implies \quad \sf x^(2)=64-25}


{:\implies \quad \sf x^(2)=39}

Raising power to ½ on both sides will leave us with x = +√39 , -√39. But as length can never be -ve


{:\implies \quad \bf \therefore \underline{\underline{x=√(39)\:\: units}}}

Hence , the another leg of the right angled triangle is √39 units

User Mohammad Reza Mrg
by
7.9k points
9 votes

Answer:

  • Given - a right triangle with length of one side = 5 units and with hypotenuse of length = 8 units.

By applying Pythagoras theorem ,


h {}^(2) = p {}^(2) + b {}^(2) \\ (8) {}^(2) = (5) {}^(2) + b {}^(2) \\ 64 = 25 + b {}^(2) \\ b {}^(2) = 64 - 25 \\ b {}^(2) = 39 \\ b = √(39 \:) \: units

hope helpful~

User Eleno
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories