14,767 views
9 votes
9 votes
Simplify the sum plz

Simplify the sum plz-example-1
User Hlidotbe
by
3.5k points

2 Answers

7 votes
7 votes

Answer:


\Huge\boxed{ \bf \frac{ {b}^(2) + {a}^(2) }{ {a}^(3)b }}

Explanation:

Given expression:


\sf \longmapsto \frac{ {a}^(3) {b}^(5) }{b {}^(4) {a}^(6) } + \frac{ {a}^(8) {b}^(6) }{b {}^(7) a {}^(9) }

Solution:


\sf \longmapsto \frac{ {a}^(3) {b}^(5) }{b {}^(4) {a}^(6) } + \frac{ {a}^(8) {b}^(6) }{b {}^(7) a {}^(9) }

Cancel a^3 and a^6 on the left hand side of plus sign, which results to a^3.


\sf \longmapsto\frac{ \cancel{{a}^(3)} {b}^(5) }{b {}^(4) \cancel{{a}^(6)} } + \frac{ {a}^(8) {b}^(6) }{b {}^(7) a {}^(9) }

That is,


\sf \longmapsto \frac{b {}^(5) }{b {}^(4) a {}^(3) } + \frac{ {a}^(8) {b}^(6) }{b {}^(7) a {}^(9) }

Cancel b^5 and 5^4 on the LHS of plus sign, which results to b.


\sf \longmapsto \frac {\cancel{b {}^(5) }}{ \cancel{b {}^(4)} a {}^(3) } + \frac{ {a}^(8) {b}^(6) }{b {}^(7) a {}^(9) }

That is,


\sf \longmapsto \frac{b }{ a {}^(3) } + \frac{ {a}^(8) {b}^(6) }{b {}^(7) a {}^(9) }

Now cancel a^8 and a^9 on the RHS of Plus sign, which results to a.


\sf \longmapsto\frac{b }{ a {}^(3) } + \frac{ \cancel{{a}^(8)} {b}^(6) }{b {}^(7) \cancel{a {}^(9)} }

That is,


\sf \longmapsto \: \frac{b }{ a {}^(3) } + \frac{ {b}^(6) }{b {}^(7) a {}^{} }

Cancel b^6 and b^7 on the RHS of the Plus sign, which results to b.


\sf \longmapsto\frac{b }{ a {}^(3) } + \frac{ \cancel{ {b}^(6)} }{ \cancel{b {}^(7)} a {}^{} }

That is,


\sf \longmapsto\frac{b }{ a {}^(3) } + \cfrac {1}{ {b {}^(1)} a {}^{} }

Simply add:-

Rewrite into:


\sf \longmapsto \: \frac{ b {}^{} }{a {}^(3) } + \cfrac{1}{a * b}

Combine the numerators over LCD(a^3)


\sf \longmapsto \: \frac{ {b}^(2) + {a}^(2) }{ {a}^(3)b }

Or it can also be rewritten as,


\sf \longmapsto \: \frac{ {a}^(2) + {b}^(2) }{ {a}^(3)b }

________________________________

I hope this helps!

Please let me know if you have any questions

User Javier Toja
by
2.9k points
2 votes
2 votes

Answer:

  • (a² + b²)/a³b

Explanation:

Simplify the given expression:

  • a³b⁵/b⁴a⁶ + a⁸b⁶/b⁷a⁹

The first fraction simplifies as:

  • b/a³ by cancelling a³ and b⁴

The second fraction simplifies as:

  • 1/ab by cancelling a⁸ and b⁶

The sum becomes:

  • b/a³ + 1/ab = Common denominator is a³b
  • b²/a³b + a²/a³b = Multiply the first fraction by b, the second by a²
  • (a² + b²)/a³b
User Sahil Dhankhar
by
3.1k points