14.8k views
9 votes
Simplify the sum plz

Simplify the sum plz-example-1
User Hlidotbe
by
7.9k points

2 Answers

7 votes

Answer:


\Huge\boxed{ \bf \frac{ {b}^(2) + {a}^(2) }{ {a}^(3)b }}

Explanation:

Given expression:


\sf \longmapsto \frac{ {a}^(3) {b}^(5) }{b {}^(4) {a}^(6) } + \frac{ {a}^(8) {b}^(6) }{b {}^(7) a {}^(9) }

Solution:


\sf \longmapsto \frac{ {a}^(3) {b}^(5) }{b {}^(4) {a}^(6) } + \frac{ {a}^(8) {b}^(6) }{b {}^(7) a {}^(9) }

Cancel a^3 and a^6 on the left hand side of plus sign, which results to a^3.


\sf \longmapsto\frac{ \cancel{{a}^(3)} {b}^(5) }{b {}^(4) \cancel{{a}^(6)} } + \frac{ {a}^(8) {b}^(6) }{b {}^(7) a {}^(9) }

That is,


\sf \longmapsto \frac{b {}^(5) }{b {}^(4) a {}^(3) } + \frac{ {a}^(8) {b}^(6) }{b {}^(7) a {}^(9) }

Cancel b^5 and 5^4 on the LHS of plus sign, which results to b.


\sf \longmapsto \frac {\cancel{b {}^(5) }}{ \cancel{b {}^(4)} a {}^(3) } + \frac{ {a}^(8) {b}^(6) }{b {}^(7) a {}^(9) }

That is,


\sf \longmapsto \frac{b }{ a {}^(3) } + \frac{ {a}^(8) {b}^(6) }{b {}^(7) a {}^(9) }

Now cancel a^8 and a^9 on the RHS of Plus sign, which results to a.


\sf \longmapsto\frac{b }{ a {}^(3) } + \frac{ \cancel{{a}^(8)} {b}^(6) }{b {}^(7) \cancel{a {}^(9)} }

That is,


\sf \longmapsto \: \frac{b }{ a {}^(3) } + \frac{ {b}^(6) }{b {}^(7) a {}^{} }

Cancel b^6 and b^7 on the RHS of the Plus sign, which results to b.


\sf \longmapsto\frac{b }{ a {}^(3) } + \frac{ \cancel{ {b}^(6)} }{ \cancel{b {}^(7)} a {}^{} }

That is,


\sf \longmapsto\frac{b }{ a {}^(3) } + \cfrac {1}{ {b {}^(1)} a {}^{} }

Simply add:-

Rewrite into:


\sf \longmapsto \: \frac{ b {}^{} }{a {}^(3) } + \cfrac{1}{a * b}

Combine the numerators over LCD(a^3)


\sf \longmapsto \: \frac{ {b}^(2) + {a}^(2) }{ {a}^(3)b }

Or it can also be rewritten as,


\sf \longmapsto \: \frac{ {a}^(2) + {b}^(2) }{ {a}^(3)b }

________________________________

I hope this helps!

Please let me know if you have any questions

User Javier Toja
by
7.9k points
2 votes

Answer:

  • (a² + b²)/a³b

Explanation:

Simplify the given expression:

  • a³b⁵/b⁴a⁶ + a⁸b⁶/b⁷a⁹

The first fraction simplifies as:

  • b/a³ by cancelling a³ and b⁴

The second fraction simplifies as:

  • 1/ab by cancelling a⁸ and b⁶

The sum becomes:

  • b/a³ + 1/ab = Common denominator is a³b
  • b²/a³b + a²/a³b = Multiply the first fraction by b, the second by a²
  • (a² + b²)/a³b
User Sahil Dhankhar
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories