183k views
3 votes
Solve: 2√(3) cos²A= sinA​

1 Answer

1 vote

Answer:

Explanation:


2√(3)\cos ^2\left(A\right)=\sin \left(A\right)\\\mathrm{Subtract\:}\sin \left(A\right)\mathrm{\:from\:both\:sides}\\2√(3)\cos ^2\left(A\right)-\sin \left(A\right)=0\\-\sin \left(A\right)+\left(1-\sin ^2\left(A\right)\right)\cdot \:2√(3)=0\\\sin \left(A\right)=-(2√(3))/(3),\:\sin \left(A\right)=(√(3))/(2)\\\mathrm{Combine\:all\:the\:solutions}\\A=(\pi )/(3)+2\pi n,\:A=(2\pi )/(3)+2\pi n4

Solve: 2√(3) cos²A= sinA​-example-1
User Mediaguru
by
3.2k points