230k views
5 votes
1)A System of equations is shown below . What is the solution to the system of equations? 5x+2y=-15 2x-2y=-6

1 Answer

4 votes

Answer:

x= -3 and y= 0

Explanation:

5x+2y=-15

2x-2y=-6

7x =-21

x= -3

Putting value of x in equation 1

5(-3) +2y=-15

-15+2y= -15

2y= 0

y= 0

This can be solved with the help of matrices

In matrix form the above equations can be written in the form


\left[\begin{array}{ccc}5&2\\2&-2\/\end{array}\right]
\left[\begin{array}{ccc}x\\y\\\end{array}\right] =
\left[\begin{array}{ccc}-15\\-6\\\end{array}\right]

Let


\left[\begin{array}{ccc}5&2\\2&-2\/\end{array}\right] = A
\left[\begin{array}{ccc}x\\y\\\end{array}\right] = X and
\left[\begin{array}{ccc}-15\\-6\\\end{array}\right]= B

Then AX= B

or X= A⁻¹ B

where A⁻¹= adj A/ ║A║ where mod A≠ 0

adj A=
\left[\begin{array}{ccc}-2&-2\\-2&5\/\end{array}\right]

║A║= ( 5*-2- 2*2)= -10-4= -14≠0

X= A⁻¹ B


\left[\begin{array}{ccc}x\\y\\\end{array}\right] =- 1/14
\left[\begin{array}{ccc}-2&-2\\-2&5\/\end{array}\right]
\left[\begin{array}{ccc}-15\\-6\\\end{array}\right]


\left[\begin{array}{ccc}x\\y\\\end{array}\right] =- 1/14
\left[\begin{array}{ccc}-2*-15&+ -2*-6\\-2*-15&+ 5*-6\\\end{array}\right]


\left[\begin{array}{ccc}x\\y\\\end{array}\right] =- 1/14
\left[\begin{array}{ccc} 30&+12\\30&+-30\\\end{array}\right]


\left[\begin{array}{ccc}x\\y\\\end{array}\right] =- 1/14
\left[\begin{array}{ccc}42\\0\\\end{array}\right]


\left[\begin{array}{ccc}x\\y\\\end{array}\right] =
\left[\begin{array}{ccc}-42/14\\0/-14\\\end{array}\right]


\left[\begin{array}{ccc}x\\y\\\end{array}\right] =
\left[\begin{array}{ccc}-3\\0\\\end{array}\right]

From here x= -3 and y= 0

Solution Set = [(-3,0)]

User Vishal Seshagiri
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories