Answer:
x= -3 and y= 0
Explanation:
5x+2y=-15
2x-2y=-6
7x =-21
x= -3
Putting value of x in equation 1
5(-3) +2y=-15
-15+2y= -15
2y= 0
y= 0
This can be solved with the help of matrices
In matrix form the above equations can be written in the form
=
![\left[\begin{array}{ccc}-15\\-6\\\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/s3vq532ccz2u1967n88guvfxzvd281mu5q.png)
Let
= A
= X and
= B
Then AX= B
or X= A⁻¹ B
where A⁻¹= adj A/ ║A║ where mod A≠ 0
adj A=
![\left[\begin{array}{ccc}-2&-2\\-2&5\/\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/oyyn0rmn30h6crijuusxlxo6w41lho35ou.png)
║A║= ( 5*-2- 2*2)= -10-4= -14≠0
X= A⁻¹ B
=- 1/14
![\left[\begin{array}{ccc}-15\\-6\\\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/s3vq532ccz2u1967n88guvfxzvd281mu5q.png)
=- 1/14
![\left[\begin{array}{ccc}-2*-15&+ -2*-6\\-2*-15&+ 5*-6\\\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/z87bifik2d78s6whp7oriubsk7lplclz2p.png)
=- 1/14
![\left[\begin{array}{ccc} 30&+12\\30&+-30\\\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/1gbmplwavu9hdadjumlgcn6n2rdryhy2jl.png)
=- 1/14
![\left[\begin{array}{ccc}42\\0\\\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/lg5nju95pxbf2za85e32ilyr5hpfwqyn4c.png)
=
![\left[\begin{array}{ccc}-42/14\\0/-14\\\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/hqo8doo3lfnfxfjqb894s7blcbew9tren5.png)
=
![\left[\begin{array}{ccc}-3\\0\\\end{array}\right]](https://img.qammunity.org/2022/formulas/mathematics/high-school/dguf9l8rz1ztz781i80s7upey3hzs96keh.png)
From here x= -3 and y= 0
Solution Set = [(-3,0)]