Answer:
![P(Not\ Star) =(2)/(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/cppex32ibxol5me9999xyh1ikryf9x47io.png)
Explanation:
Given
See attachment
Required
Theoretical probability that a roll will not land on a star
From the attachment, we have:
--- Total space
![Star = 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/ojumt7b2yp4khslegf7fgpe86bkvi7rd9r.png)
So, the theoretical probability that a roll will land on a star is:
![P(Star) = (n(Star))/(n)](https://img.qammunity.org/2022/formulas/mathematics/high-school/xv4s042rtw2d7urmc6t8lx7unpt16gsx07.png)
![P(Star) = (4)/(12)](https://img.qammunity.org/2022/formulas/mathematics/high-school/h7w19izs11ly693754823xjmgkst1q8yyo.png)
![P(Star) = (1)/(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/okzbhyt51m471emsejuy6ht88hsv0zfdxl.png)
Using the complement rule, the probability that it will not land on a star is:
![P(Not\ Star) = 1 - P(Star)](https://img.qammunity.org/2022/formulas/mathematics/high-school/c5q1cftgchy4gh4l8wz4qh0364zjt5p28c.png)
![P(Not\ Star) = 1 - (1)/(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rfvxsnt5rws84ik727h04ue716zjz31x8k.png)
Take LCM
![P(Not\ Star) =(3-1)/(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7u22n5duno2q2q10up0q2w5tqzkx1b8qko.png)
![P(Not\ Star) =(2)/(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/cppex32ibxol5me9999xyh1ikryf9x47io.png)