Answer:
Both volumes are the same
Explanation:
Volume of cylinder =
![\pi](https://img.qammunity.org/2022/formulas/mathematics/college/s4ht6viufhvosibsvbsiti4yo2omjnujmf.png)
![r^(2) h](https://img.qammunity.org/2022/formulas/mathematics/high-school/1o821dri6wrcn37nzsvtf3dgynrr9xmz1b.png)
r = radius
h = height
Since area of the circle is given on top,
Area of a circle =
![\pi](https://img.qammunity.org/2022/formulas/mathematics/college/s4ht6viufhvosibsvbsiti4yo2omjnujmf.png)
![r^(2)](https://img.qammunity.org/2022/formulas/mathematics/college/2cxbkrnhh0prehrq07n90qqkt6wbtpqier.png)
We know the area is 12
12 =
![\pi](https://img.qammunity.org/2022/formulas/mathematics/college/s4ht6viufhvosibsvbsiti4yo2omjnujmf.png)
(we need to find r)
r =
![\sqrt{(12)/(\pi) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/u1whfy0ispy9sie7z1d8ncjdc6k4kz3v28.png)
r = 1.954
Now we can find the cylinder's volume:
Volume of cylinder =
![\pi](https://img.qammunity.org/2022/formulas/mathematics/college/s4ht6viufhvosibsvbsiti4yo2omjnujmf.png)
(6)
Volume of cylinder = 72
To find the volume of the cuboid, we use
Volume of cuboid = lwh
l = length
w = width
h = height
Volume of cuboid = 6 x 4 x 3
Volume of cuboid = 72
This proves that both the volumes are the same.