173k views
7 votes
Solve trigonometric function
sin∅ + cos∅ × cot∅

User Alex Aza
by
5.7k points

1 Answer

11 votes

Answer:


\csc(\theta)

Explanation:


\cot(\theta)=(1)/(\tan(\theta))=(\cos(\theta))/(\sin(\theta))


\sin^2(\theta)+\cos^2(\theta)=1


\implies \sin(\theta)+\cos(\theta)*\cot(\theta)=\sin(\theta)+\cos(\theta)*(\cos(\theta))/(\sin(\theta))


=\sin(\theta)+(\cos^2(\theta))/(\sin(\theta))


=(\sin^2(\theta))/(\sin(\theta))+(\cos^2(\theta))/(\sin(\theta))


=(\sin^2(\theta)+\cos^2(\theta))/(\sin(\theta))


=(1)/(\sin(\theta))


=\csc(\theta)

User Jhaavist
by
5.2k points