136k views
2 votes
Solve trigonometric function

2csc∅- 2cos^2 ∅ ×csc∅

User Jarrette
by
4.6k points

2 Answers

4 votes
  • Theta turned to A


\\ \rm\Rrightarrow 2cscA-2cos^2A(cscA)


\\ \rm\Rrightarrow 2(1/sinA)-2cos^2A(1/sinA)


\\ \rm\Rrightarrow (2)/(sinA)-(2cos^2A)/(sinA)


\\ \rm\Rrightarrow (2-2cos^2A)/(sinA)


\\ \rm\Rrightarrow (2(1-cos^2A))/(sinA)


\\ \rm\Rrightarrow (2sin^2A)/(sinA)


\\ \rm\Rrightarrow sinA

User Mouin
by
4.1k points
6 votes

Answer:


2\sin(\theta)

Explanation:


\csc(\theta)=(1)/(\sin(\theta))


\sin^2(\theta)+\cos^2(\theta)=1\implies \sin^2(\theta)=1-\cos^2(\theta)


2\csc(\theta)- 2cos^2(\theta)* csc(\theta)


=(2)/(\sin(\theta))-( 2cos^2(\theta))/(\sin(\theta))


=( 2[1-cos^2(\theta)])/(\sin(\theta))


=( 2sin^2(\theta))/(\sin(\theta))


=2\sin(\theta)

User Tonysepia
by
4.8k points