Answer:
The value of x is 6 .
Step-by-step explanation:
Solution :
Here's the required formula of median of trapezoid :
![{\implies{\pmb{\sf{Median=(Base_1 + Base_2)/(2)}}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/m6zwed7dn9fbzqz9iivfvcu8ugnm9flsoa.png)
Where :
- ➝ Median
= 15 - ➝ Base₁ (AB) = x + 1
- ➝ Base₂ (CD) = 3x + 5
Substituting all the given values in the formula to find the value of x :
![\begin{gathered}\qquad{\longrightarrow{\sf{Median =(Base_1 + Base_2)/(2)}}}\\\\\qquad{\longrightarrow{\sf{\overline{EF} =(Base_1 + Base_2)/(2)}}}\\\\\qquad{\longrightarrow{\sf{15 =((x +1) + (3x + 5))/(2)}}}\\\\\qquad{\longrightarrow{\sf{15 =((x +3x) + (1 + 5))/(2)}}}\\\\\quad{\longrightarrow{\sf{15 =((4x) + (6))/(2)}}}\\\\ \quad{\longrightarrow{\sf{15 * 2 = 4x + 6}}}\\\\\quad{\longrightarrow{\sf{30 = 4x + 6}}}\\\\\quad{\longrightarrow{\sf{4x = 30 - 6}}}\\\\\quad{\longrightarrow{\sf{4x =24}}}\\\\\quad{\longrightarrow{\sf{x = (24)/(4)}}}\\\\\quad{\longrightarrow{\sf{x =6}}}\\\\\quad{\star{\underline{\boxed{\sf{\purple{x =6}}}}}}\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sl7japzfc8x62x8ffy23p5lvjclysbwva6.png)
Hence, the value of x is 6.
![\rule{300}{2.5}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4wr5wvuxv3n1yp1b1sykhxf527peu2ltxm.png)