186k views
2 votes
Please help thank you :)​

Please help thank you :)​-example-1
User AmmarCSE
by
5.2k points

1 Answer

4 votes


\: \: \: \: \: \: \red{ \underline{ \large{ \pink{ \tt{꧁ A \: N \: S \: W \: E \: R ꧂}}} }}


\underline{ \underline{ \large{ \red{ \tt{G \: I\: V \: E\: N}}}} }:

  • AC bisects
    \tt{ \angle BAD\: \& \: \angle \: BCD}


\underline{ \underline{ \large{ \tt{ \purple{T \: O \: \: F \: I\: N\: D}}}}} :

  • Congruence theorem which justifies ∆ ABC
    \cong ∆ ADC.


\underline{ \underline{ \large{ \tt{ \orange{P \: R\:O \: O \: F \: S}}} }}:


\begin{array}  \hline \text{SN}& \text{Statement} & \text{Reason}\\ \hline \\ \text{1 \: i.}& \sf{In \triangle} \:ABC \: \& \: \triangle \: ACD \: \ \\ & \tt{ \angle ACB= \angle \: ACD(A)}\ & \sf{AC \: bisects \angle \: BCD(Given)} \\ \text{ii} \: & \tt{AC= CA(S)}& \sf{Common \: side} \\ \text{iii} \: & \tt{ \angle \: BAC = \angle \: CAD(A)}& \sf{AC \: bisects \: \angle \: BAD ( Given )}& \\ \\ \hline 2& \tt{ \triangle} \: ABC \cong \triangle{ADC}& \red{\underline{\sf{ \bold{By \: ASA\: axiom}}}} \\ \hline\end{array}

Hence , We can conclude :

  • ASA congruence theorem justifies ∆ ABC
    \cong ∆ ADC

ツ Hope I helped! ♡

♪ Have a wonderful day / night ! ✎


\underbrace{ \overbrace{ \mathfrak{Carry \: On \:Learning}}} ☃

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

User Eliseo Soto
by
5.4k points