186k views
2 votes
Please help thank you :)​

Please help thank you :)​-example-1
User AmmarCSE
by
8.0k points

1 Answer

4 votes


\: \: \: \: \: \: \red{ \underline{ \large{ \pink{ \tt{꧁ A \: N \: S \: W \: E \: R ꧂}}} }}


\underline{ \underline{ \large{ \red{ \tt{G \: I\: V \: E\: N}}}} }:

  • AC bisects
    \tt{ \angle BAD\: \& \: \angle \: BCD}


\underline{ \underline{ \large{ \tt{ \purple{T \: O \: \: F \: I\: N\: D}}}}} :

  • Congruence theorem which justifies ∆ ABC
    \cong ∆ ADC.


\underline{ \underline{ \large{ \tt{ \orange{P \: R\:O \: O \: F \: S}}} }}:


\begin{array}  \hline \text{SN}& \text{Statement} & \text{Reason}\\ \hline \\ \text{1 \: i.}& \sf{In \triangle} \:ABC \: \& \: \triangle \: ACD \: \ \\ & \tt{ \angle ACB= \angle \: ACD(A)}\ & \sf{AC \: bisects \angle \: BCD(Given)} \\ \text{ii} \: & \tt{AC= CA(S)}& \sf{Common \: side} \\ \text{iii} \: & \tt{ \angle \: BAC = \angle \: CAD(A)}& \sf{AC \: bisects \: \angle \: BAD ( Given )}& \\ \\ \hline 2& \tt{ \triangle} \: ABC \cong \triangle{ADC}& \red{\underline{\sf{ \bold{By \: ASA\: axiom}}}} \\ \hline\end{array}

Hence , We can conclude :

  • ASA congruence theorem justifies ∆ ABC
    \cong ∆ ADC

ツ Hope I helped! ♡

♪ Have a wonderful day / night ! ✎


\underbrace{ \overbrace{ \mathfrak{Carry \: On \:Learning}}} ☃

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

User Eliseo Soto
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories