Answer:
the ratio of her final kinetic energy to her initial kinetic energy is 1.7.
Step-by-step explanation:
Given;
initial angular speed, ω₁ = 5.9 rad/s
let her initial moment of inertia = I₁
her final moment of inertia
![I_2 = (I_1)/(1.7)](https://img.qammunity.org/2022/formulas/physics/college/zvh245hd9p27nmf8v2glm36sezczab2wxg.png)
Apply the principle of conservation of angular momentum to determine the final angular speed of the girl;
![\omega_1I_1 = \omega_f I_2\\\\\omega_f = (\omega _1 I_1)/(I_2) \\\\\omega_f = (5.9 * I_1)/(I_1/1.7) \\\\\omega = 5.9 * 1.7 \\\\\omega_f = 10.03 \ rad/s](https://img.qammunity.org/2022/formulas/physics/college/xmerzr9bbrfpalgiiq7jmi4ut3xuziwo23.png)
The initial rotational kinetic energy is given as;
![K.E_I = (1)/(2)I_1 \omega_I ^2](https://img.qammunity.org/2022/formulas/physics/college/82w56dyq07gzfnnwo0p53l3p3mo78lmeyu.png)
The final rotational kinetic energy is given as;
![K.E_f = (1)/(2)I_2 \omega_f ^2](https://img.qammunity.org/2022/formulas/physics/college/y996nihs2ryac9c8nzbz97n9gjfa0e7rjg.png)
The ratio of her final kinetic energy to her initial kinetic energy is given as;
![(K.E_f)/(K.E_I)= ((1)/(2)I_2 \omega_f^2 )/((1)/(2) I_1\omega _1^2) \\\\(K.E_f)/(K.E_I)= (I_2 \omega_f^2)/( I_1\omega _1^2) \\\\(K.E_f)/(K.E_I)= (I_1/1.7 * \omega_f^2)/( I_1 * \omega _1^2) \\\\(K.E_f)/(K.E_I)= ( \omega_f^2)/( 1.7 \omega _1^2) \\\\(K.E_f)/(K.E_I)= ( (10.03)^2)/( 1.7(5.9)^2) = (17)/(10) = 1.7](https://img.qammunity.org/2022/formulas/physics/college/mces5i5bo7srj3azo7n8ahodmpasj3dqf6.png)
Therefore, the ratio of her final kinetic energy to her initial kinetic energy is 1.7.