32.1k views
1 vote
Let f(x)=ln(x^2) and g(x)=√e^3x. find fog(x) and its domian

1 Answer

3 votes

Answer:


(f\ o\ g)(x) = 3x


-\infty < x < \infty

Explanation:

Given


f(x) = ln(x^2)


g(x)=\sqrt{e^(3x)}

Solving (a): (f o g)(x)

This is calculated as:


(f\ o\ g)(x) = f(g(x))

We have:


f(x) = ln(x^2)


f(g(x)) = \ln((g(x))^2)

Substitute:
g(x)=\sqrt{e^(3x)}


f(g(x)) = \ln(\sqrt{e^(3x)})^2

Evaluate the square


f(g(x)) = \ln(e^(3x))

Using laws of natural logarithm:


\ln(e^(ax)) = ax

So:


f(g(x)) = \ln(e^(3x))


f(g(x)) = 3x

Hence:


(f\ o\ g)(x) = 3x

Solving (b): The domain

We have:


f(g(x)) = 3x

The above function has does not have any undefined points and domain constraints.

Hence, the domain is:
-\infty < x < \infty

User Robert Heine
by
4.4k points