Answer:
a)
, b)
, c)
, d)
, e)
, f)
![\sin 34.5^(\circ)\approx 0.566](https://img.qammunity.org/2022/formulas/mathematics/high-school/sodlb154r99o5jpt78t2sdmxotlrvc69x9.png)
Explanation:
Sabemos que un minuto equivale a
de un grado sexagesimal, mientras que un segundo equivale a
de un grado sexagesimal, entonces procedemos a convertir cada ángulo a su forma decimal y simplificamos en términos de senos y cosenos mediante identidades trigonométricas:
a)
![\sin 38^(\circ)34'56'' = \sin 38.582^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/high-school/m798g117a80lfr83tdw5hwxqag6987xkvk.png)
Por tablas trigonométricas tenemos que
y
, mediante interpolación lineal tenemos que:
![\sin 38.582^(\circ) \approx 0.624](https://img.qammunity.org/2022/formulas/mathematics/high-school/zuk4pxev969sgk558mndnj1l4bama0vi7u.png)
b)
![\cot 45^(\circ) 34' = \cot 45.567^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/high-school/e8lzycsoqd7vy76k1f3ueb4zq0ey2dzmzn.png)
![\cot 45.567^(\circ) = (\cos 45.567^(\circ))/(\sin 45.567^(\circ))](https://img.qammunity.org/2022/formulas/mathematics/high-school/lwycpn2ooxde4m805cttycf2gx2bjcbk68.png)
Por tablas trigonométricas tenemos que
,
,
y
, mediante interpolación lineal tenemos que:
![\cot 45.567^(\circ)\approx 0.980](https://img.qammunity.org/2022/formulas/mathematics/high-school/i9si3tan77sybqbmzvvdzzt756k1r4qfs2.png)
c)
![\sec 39^(\circ) = (1)/(\cos 39^(\circ))](https://img.qammunity.org/2022/formulas/mathematics/high-school/fzneqnf7gpyn0r7fh93lj6xmy8feptiijy.png)
Por tablas trigonométricas tenemos que
, entonces tenemos que:
![\sec 39^(\circ) = 1.287](https://img.qammunity.org/2022/formulas/mathematics/high-school/56a82qydq8uthqz6aw4flgkwr51wcuejaj.png)
d)
![\tan 12^(\circ) = (\sin 12^(\circ))/(\cos 12^(\circ))](https://img.qammunity.org/2022/formulas/mathematics/high-school/pbxc4ffdvk73879ch3uac5np4jvua288in.png)
Por tablas trigonométricas tenemos que
and
, entonces tenemos que:
![\tan 12^(\circ) \approx 0.213](https://img.qammunity.org/2022/formulas/mathematics/high-school/kobocbg4yopj5ijea8agntxq1mplupk4po.png)
e)
![\csc 16^(\circ)24' = \csc 16.4^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/high-school/iq1jddimn084qdt4hw1p6ulrrqkb4v19ny.png)
![\csc 16.4^(\circ) = (1)/(\sin 16.4^(\circ))](https://img.qammunity.org/2022/formulas/mathematics/high-school/v8bxh3axnvmwvins3p2f5n33ujhkdr7o9v.png)
Por tablas trigonométricas tenemos que
y
, mediante interpolación lineal tenemos que:
![\csc 16.4^(\circ) \approx 3.542](https://img.qammunity.org/2022/formulas/mathematics/high-school/kc5ggqluxpb651kcd30bffp4j4vi25gaq7.png)
f)
![\sin 34.5^(\circ)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4mv9qfcj9fb0r2spp5pkzg97t6anfkpp1i.png)
Por tablas trigonométricas tenemos que
y
, mediante interpolación lineal tenemos que:
![\sin 34.5^(\circ)\approx 0.566](https://img.qammunity.org/2022/formulas/mathematics/high-school/sodlb154r99o5jpt78t2sdmxotlrvc69x9.png)