Answer:
The quadrilateral ABCD is a square.
Explanation:
According to the statement, AB, BC, CD and DA are the sides of the quadrilateral, whereas DB and AC are its diagonals. If we know that
,
,
,
,
,
and
, the lengths of each line segment are respectively:
Sides
![AB = 4\cdot (7) -2](https://img.qammunity.org/2022/formulas/mathematics/college/ml7pdmvlkof2jgyiuqm0f7gncngt1wz9uf.png)
![AB = 26](https://img.qammunity.org/2022/formulas/mathematics/college/qzl8fw2p1xxrjeoqiv1ddp44i6vodqzrwo.png)
![BC = 2\cdot (7) +12](https://img.qammunity.org/2022/formulas/mathematics/college/w9jmqu12fc2moy11fd2dy29wwpy3mq0573.png)
![BC = 26](https://img.qammunity.org/2022/formulas/mathematics/college/wp1eupvnojeqnyxmic5pp33012veuzgqh2.png)
![DC = 3\cdot (7) +5](https://img.qammunity.org/2022/formulas/mathematics/college/b5v5wbby1ah0264avq2h8rj2hn889vcj82.png)
![DC = 26](https://img.qammunity.org/2022/formulas/mathematics/college/f8y3kabr1pmq8wh79oxs0yocaxbss7amql.png)
![AD = 6\cdot (7) -16](https://img.qammunity.org/2022/formulas/mathematics/college/dtrfk55dupjuegcyq1k7d7hnrddxas1taj.png)
![AD = 26](https://img.qammunity.org/2022/formulas/mathematics/college/urqcaka3yw4d9fvbkm1qo228trzsf2mgl8.png)
Diagonals
![AC = 4\cdot (7) +12](https://img.qammunity.org/2022/formulas/mathematics/college/96awrgjs55vwio2qli83xh1n89598td980.png)
![AC = 40](https://img.qammunity.org/2022/formulas/mathematics/college/f9g7j97a33l9kgrwt1h54nw767m5br90hp.png)
![DB = 8\cdot (7) - 10](https://img.qammunity.org/2022/formulas/mathematics/college/v4g2xxl9v8b8m6rd6jfq34jeby0aklmoxt.png)
![DB = 40](https://img.qammunity.org/2022/formulas/mathematics/college/yz7b0kz3811fpxpwi1tqb5k1orzmjuojyv.png)
This information indicates that this quadrilateral is a square because of these characteristics:
1) All sides have the same length.
2) The ratio of any diagonal to any side is
.