105k views
3 votes
Solve the system.
9x2 + 4(y - 2)2 = 36
x² = 2y

1 Answer

2 votes

Answer:


x =2


y =2

Explanation:

Given


9x^2 + 4(y - 2)^2 = 36


x^2 = 2y

Required

Solve

Substitute:
x^2 = 2y in
9x^2 + 4(y - 2)^2 = 36


9*2y + 4(y-2)^2 = 36


18y + 4(y-2)^2 = 36

Open bracket


18y + 4[y^2-2y - 2y + 4] = 36


18y + 4[y^2-4y + 4] = 36

Open bracket


18y + 4y^2-16y + 16 = 36

Collect like terms


4y^2+18y-16y + 16 - 36 = 0


4y^2+2y-20= 0

Divide through by 2


2y^2+y-10= 0

Expand


2y^2+5y - 4y-10= 0

Factorize


y(2y + 5) - 2(2y + 5) = 0

Factor out 2y + 5


(y -2)(2y + 5) = 0

Split


y - 2 =0\ or\ 2y + 5 = 0

Solve for y


y =2 \ or\y = -(5)/(2)

We have:


x^2 = 2y

Make x the subject


x = \sqrt{2y

The above is true for positive y values.

So:
y =2

This gives


x = \sqrt{2*2


x = \sqrt{4


x =2

User Benj
by
3.2k points