Answer:
![\displaystyle 2 \sin(x) + 2x \cos( \alpha ) + \rm C](https://img.qammunity.org/2022/formulas/mathematics/high-school/qqbe3yvb6vqciaxdvi0w0c1wxur0zk1m3z.png)
Explanation:
we would like to integrate the following integration:
![\displaystyle \int ( \cos(2x) - \cos(2 \alpha ) )/( \cos(x) - \cos( \alpha ) ) dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/8si15v15p5rzmv1b67ce83ntzccndn3ypr.png)
notice that you can simplify the integrand
recall that,
![\displaystyle \cos(2 \theta) = 2 \cos(\theta) ^(2) - 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/9wiyhm1fl9s5y8vre4wohagtdfj6gnrw9e.png)
thus substitute:
![\displaystyle \int \frac{ 2\cos^(2) (x)- 1 - \{2\cos ^(2) (\alpha ) - 1 \} }{ \cos(x) - \cos( \alpha ) } dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/uxf3ay9gj24j40bduzq5645daota6cv8eh.png)
remove parentheses:
![\displaystyle \int ( 2\cos^(2) (x)- 1 - 2\cos ^(2) (\alpha ) + 1)/( \cos(x) - \cos( \alpha ) ) dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/1wed1kxant7ul5bj1rbmn8gjh6cp8vujv7.png)
![\displaystyle \int ( 2\cos^(2) (x) - 2\cos ^(2) (\alpha ) )/( \cos(x) - \cos( \alpha ) ) dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/dd0pzaon54b5y79bdt65rsqog7wvdbrijo.png)
factor out 2:
![\displaystyle \int ( 2(\cos^(2) (x) - \cos ^(2) (\alpha )) )/( \cos(x) - \cos( \alpha ) ) dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/fjma3ur76zxzqkw7tow0ljcc4jm0xac134.png)
we can use algebraic identity i.e
a²-b²=(a+b)(a-b) to factor the denominator
![\displaystyle \int \frac{ 2(\cos^{} (x) + \cos ^{} (\alpha ))( \cos(x) - \cos( \alpha ) ) }{ \cos(x) - \cos( \alpha ) } dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/s8ibhsbau04vs8ztikxelgk5l4ufg6sqds.png)
reduce fraction:
![\displaystyle \int \frac{ 2(\cos^{} (x) + \cos ^{} (\alpha ))( \cancel{\cos(x) - \cos( \alpha ) ) }}{ \cancel{\cos(x) - \cos( \alpha ) }} dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/k4i5mgpo901e2w73f7h8pqwtejqt897jke.png)
![\displaystyle \int 2( \cos(x) + \cos( \alpha ) )dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/nugt33efsagohwnvyrfegorubs7t1pqji7.png)
distribute:
![\displaystyle \int 2 \cos(x) + 2\cos( \alpha ) dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/skul8olds0wyxnov83p9e0fwg2kb32cw8u.png)
use sum integration formula:
![\rm \displaystyle \int 2 \cos(x) dx+ \int2\cos( \alpha ) dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/fmkx38o5wwgs2r7hj97bkw1ui8fh68smqw.png)
recall integration rules:
![\displaystyle 2 \sin(x) + 2x \cos( \alpha )](https://img.qammunity.org/2022/formulas/mathematics/high-school/otzdt0w69r59ydas95gotmjwiolw0s3b8j.png)
and we of course have to add constant of integration
![\displaystyle 2 \sin(x) + 2x \cos( \alpha ) + \rm C](https://img.qammunity.org/2022/formulas/mathematics/high-school/qqbe3yvb6vqciaxdvi0w0c1wxur0zk1m3z.png)