96.3k views
1 vote
Help please!

integrate the following:

\displaystyle \int ( \cos(2x) - \cos(2a) )/( \cos(x) - \cos( \alpha ) ) dx


User Ikdemm
by
4.8k points

1 Answer

6 votes

Answer:


\displaystyle 2 \sin(x) + 2x \cos( \alpha ) + \rm C

Explanation:

we would like to integrate the following integration:


\displaystyle \int ( \cos(2x) - \cos(2 \alpha ) )/( \cos(x) - \cos( \alpha ) ) dx

notice that you can simplify the integrand

recall that,


\displaystyle \cos(2 \theta) = 2 \cos(\theta) ^(2) - 1

thus substitute:


\displaystyle \int \frac{ 2\cos^(2) (x)- 1 - \{2\cos ^(2) (\alpha ) - 1 \} }{ \cos(x) - \cos( \alpha ) } dx

remove parentheses:


\displaystyle \int ( 2\cos^(2) (x)- 1 - 2\cos ^(2) (\alpha ) + 1)/( \cos(x) - \cos( \alpha ) ) dx


\displaystyle \int ( 2\cos^(2) (x) - 2\cos ^(2) (\alpha ) )/( \cos(x) - \cos( \alpha ) ) dx

factor out 2:


\displaystyle \int ( 2(\cos^(2) (x) - \cos ^(2) (\alpha )) )/( \cos(x) - \cos( \alpha ) ) dx

we can use algebraic identity i.e

a²-b²=(a+b)(a-b) to factor the denominator


\displaystyle \int \frac{ 2(\cos^{} (x) + \cos ^{} (\alpha ))( \cos(x) - \cos( \alpha ) ) }{ \cos(x) - \cos( \alpha ) } dx

reduce fraction:


\displaystyle \int \frac{ 2(\cos^{} (x) + \cos ^{} (\alpha ))( \cancel{\cos(x) - \cos( \alpha ) ) }}{ \cancel{\cos(x) - \cos( \alpha ) }} dx


\displaystyle \int 2( \cos(x) + \cos( \alpha ) )dx

distribute:


\displaystyle \int 2 \cos(x) + 2\cos( \alpha ) dx

use sum integration formula:


\rm \displaystyle \int 2 \cos(x) dx+ \int2\cos( \alpha ) dx

recall integration rules:


\displaystyle 2 \sin(x) + 2x \cos( \alpha )

and we of course have to add constant of integration


\displaystyle 2 \sin(x) + 2x \cos( \alpha ) + \rm C

User Tung Do
by
5.7k points