Answer:


Explanation:
Given
See attachment for graph
Solving (a): Increasing interval
To do this, we simply identify the interval at which the value of the graph increases.
The value has an increased interval between -2 and 1.5 (of the x-axis).
Hence, the increasing interval is:

Solving (b): Decreasing interval
To do this, we simply identify the interval at which the value of the graph decreases.
The value has decreased intervals between - infinity and -2 and also 1.5 and infinity (of the x-axis).
Hence, the decreasing interval is:
