Answer:
g'(n) = 2(n + 2)
Explanation:
g(n) = (n + 2)²
g(n) = n² + 4n
g'(n) = 2n + 4
»g(n) = (n + 2)²
»g(n) = (n + 2)(n + 2)
»g(n) = n(n + 2) + 2(n + 2)
»g(n) = n² + 2n + 2n + 4
»g(n) = n² + 4n + 4✅
4.6m questions
6.0m answers