1.1k views
18 votes
Find cot and cos
If sec = -3 and sin 0 > 0

Find cot and cos If sec = -3 and sin 0 > 0-example-1
User Omotto
by
7.9k points

1 Answer

7 votes

Answer:

Second answer

Explanation:

We are given
\displaystyle \large{\sec \theta = -3} and
\displaystyle \large{\sin \theta > 0}. What we have to find are
\displaystyle \large{\cot \theta} and
\displaystyle \large{\cos \theta}.

First, convert
\displaystyle \large{\sec \theta} to
\displaystyle \large{(1)/(\cos \theta)} via trigonometric identity. That gives us a new equation in form of
\displaystyle \large{\cos \theta}:


\displaystyle \large{(1)/(\cos \theta) = -3}

Multiply
\displaystyle \large{\cos \theta} both sides to get rid of the denominator.


\displaystyle \large{(1)/(\cos \theta) \cdot \cos \theta = -3 \cos \theta}\\\displaystyle \large{1=-3 \cos \theta}

Then divide both sides by -3 to get
\displaystyle \large{\cos \theta}.

Hence,
\displaystyle \large{\boxed{\cos \theta = - (1)/(3)}}

__________________________________________________________

Next, to find
\displaystyle \large{\cot \theta}, convert it to
\displaystyle \large{(1)/(\tan \theta)} via trigonometric identity. Then we have to convert
\displaystyle \large{\tan \theta} to
\displaystyle \large{(\sin \theta)/(\cos \theta)} via another trigonometric identity. That gives us:


\displaystyle \large{(1)/((\sin \theta)/(\cos \theta))}\\\displaystyle \large{(\cos \theta)/(\sin \theta)

It seems that we do not know what
\displaystyle \large{\sin \theta} is but we can find it by using the identity
\displaystyle \large{\sin \theta = √(1-\cos ^2 \theta)} for
\displaystyle \large{\sin \theta > 0}.

From
\displaystyle \large{\cos \theta = -(1)/(3)} then
\displaystyle \large{\cos ^2 \theta = (1)/(9)}.

Therefore:


\displaystyle \large{\sin \theta=\sqrt{1-(1)/(9)}}\\\displaystyle \large{\sin \theta = \sqrt{(9)/(9)-(1)/(9)}}\\\displaystyle \large{\sin \theta = \sqrt{(8)/(9)}}

Then use the surd property to evaluate the square root.

Hence,
\displaystyle \large{\boxed{\sin \theta=(2√(2))/(3)}}

Now that we know what
\displaystyle \large{\sin \theta} is. We can evaluate
\displaystyle \large{(\cos \theta)/(\sin \theta)} which is another form or identity of
\displaystyle \large{\cot \theta}.

From the boxed values of
\displaystyle \large{\cos \theta} and
\displaystyle \large{\sin \theta}:-


\displaystyle \large{\cot \theta = (\cos \theta)/(\sin \theta)}\\\displaystyle \large{\cot \theta = (-(1)/(3))/((2√(2))/(3))}\\\displaystyle \large{\cot \theta=-(1)/(3) \cdot (3)/(2√(2))}\\\displaystyle \large{\cot \theta=-(1)/(2√(2))

Then rationalize the value by multiplying both numerator and denominator with the denominator.


\displaystyle \large{\cot \theta = -(1 \cdot 2√(2))/(2√(2) \cdot 2√(2))}\\\displaystyle \large{\cot \theta = -(2√(2))/(8)}\\\displaystyle \large{\cot \theta = -(√(2))/(4)}

Hence,
\displaystyle \large{\boxed{\cot \theta = -(√(2))/(4)}}

Therefore, the second choice is the answer.

__________________________________________________________

Summary

  • Trigonometric Identity


\displaystyle \large{\sec \theta = (1)/(\cos \theta)}\\ \displaystyle \large{\cot \theta = (1)/(\tan \theta) = (\cos \theta)/(\sin \theta)}\\ \displaystyle \large{\sin \theta = √(1-\cos ^2 \theta) \ \ \ (\sin \theta > 0)}\\ \displaystyle \large{\tan \theta = (\sin \theta)/(\cos \theta)}

  • Surd Property


\displaystyle \large{\sqrt{(x)/(y)} = (√(x))/(√(y))}

Let me know in the comment if you have any questions regarding this question or for clarification! Hope this helps as well.

User Mambo
by
8.6k points

No related questions found