Answer:
vf = 9.48 m/s
Step-by-step explanation:
From the law of conservation of energy we can write:
![Kinetic\ Energy\ Lost = Work\ Against\ Friction\\(1)/(2)m(v_i^2 - v_f^2) = fd\\(1)/(2)m(v_i^2 - v_f^2) = (\mu W)d\\(1)/(2)m(v_i^2 - v_f^2) = (\mu mg)d\\(1)/(2)(v_i^2 - v_f^2) = \mu gd\\v_f^2 = v_i^2 - 2\mu gd](https://img.qammunity.org/2022/formulas/physics/college/fisaeyk86u0en7bpq85bgujn6s53fawryu.png)
where,
vf = final speed = ?
vi = initial speed = 10.1 m/s
μ = coefficient of friction = 0.3
g = acceleration due to gravity = 9.81 m/s²
d = distance covered = 2.07 m
Therefore,
![v_f^2 = (10.1\ m/s)^2 - 2(0.3)(9.81\ m/s^2)(2.07\ m)\\v_f^2 = 102.01\ m^2/s^2 - 12.18\ m^2/s^2\\v_f = √(89.83\ m^2/s^2)\\](https://img.qammunity.org/2022/formulas/physics/college/95b5ezkudrjjk3bdix2cr61srfzsotzus5.png)
vf = 9.48 m/s