136k views
4 votes
Drag each statement to the correct location.

Determine if the given statements are true or false.

The hexadecimal equivalent

of 22210 is DE

The binary equivalent of

D7 is 11010011

The decimal equivalent of

1316 is 19.

True

False

User Chrowe
by
3.4k points

1 Answer

2 votes

Answer:


(a)\ 222_(10) = DE_(16) --- True


(b)\ D7_(16) = 11010011_2 --- False


(c)\ 13_(16) = 19_(10) --- True

Step-by-step explanation:

Required

Determine if the statements are true or not.


(a)\ 222_(10) = DE_(16)

To do this, we convert DE from base 16 to base 10 using product rule.

So, we have:


DE_(16) = D * 16^1 + E * 16^0

In hexadecimal.


D =13 \\E = 14

So, we have:


DE_(16) = 13 * 16^1 + 14 * 16^0


DE_(16) = 222_(10)

Hence:

(a) is true


(b)\ D7_(16) = 11010011_2

First, convert D7 to base 10 using product rule


D7_(16) = D * 16^1 + 7 * 16^0


D = 13

So, we have:


D7_(16) = 13 * 16^1 + 7 * 16^0


D7_(16) = 215_(10)

Next convert 215 to base 2, using division rule


215 / 2 = 107 R 1


107/2 =53 R 1


53/2 =26 R1


26/2 = 13 R 0


13/2 = 6 R 1


6/2 = 3 R 0


3/2 = 1 R 1


1/2 = 0 R1

Write the remainders from bottom to top.


D7_(16) = 11010111_2

Hence (b) is false


(c)\ 13_(16) = 19_(10)

Convert 13 to base 10 using product rule


13_(16) = 1 * 16^1 + 3 * 16^0


13_(16) = 19

Hence; (c) is true

User Abdelfattah
by
4.4k points