33.4k views
5 votes
Determine whether each set of points make a right triangle using the Pythagorean Theorem. 1. A(3 , -4) B(-4 , 3) C(0 , 0) 2. O(2 , 5) P(-1 , 3) Q(7 , 4) 3. T(1 , 1) U(3 , 3) V(5 , 1)

User ZiMtyth
by
4.7k points

1 Answer

5 votes

Answer:


1.\ A(3 , -4)\ B(-4 , 3)\ C(0 , 0) -- Not right triangle


2.\ O(2 , 5)\ P(-1 , 3)\ Q(7 , 4) -- Not right triangle


3.\ T(1 , 1)\ U(3 , 3)\ V(5 , 1) -- Right triangle

Step-by-step explanation:

Required

Determine whether the given points make a right triangle


1.\ A(3 , -4)\ B(-4 , 3)\ C(0 , 0)

First, calculate the distance between each point using:


d = √((x_1 - x_2)^2 + (y_1 - y_2)^2)

So, we have:


AB = √((3 - -4)^2 + (-4 - 3)^2)= √(98) = 7\sqrt 2


BC = √((-4 - 0)^2 + (3 - 0)^2)= √(25) = 5


AC = √((3 - 0)^2 + (-4 - 0)^2)= √(25) = 5

From the above computations, the longest side is AB.

So;


AB^2 = BC^2 + AC^2 --- Test of Pythagoras


(7\sqrt 2)^2 = 5^2 + 5^2


98 = 25 + 25


98 \\e 50

The above points do not make a right triangle


2.\ O(2 , 5)\ P(-1 , 3)\ Q(7 , 4)

Calculate distance


OP = √((2 - -1)^2 + (5 - 3)^2)= √(13)


PQ = √((-1 -7)^2 + (3 - 4)^2)= √(65)


OQ = √((2 -7)^2 + (5 - 4)^2)= √(26)

From the above computations, the longest side is PQ

So;


PQ^2 = OP^2 + OQ^2 --- Test of Pythagoras


√(65)^2 = √(13)^2 + √(26)^2


65 = 13 + 26


65 \\e 39

The above points do not make a right triangle


3.\ T(1 , 1)\ U(3 , 3)\ V(5 , 1)

Calculate distance


TU = √((1 -3)^2 + (1 - 3)^2)= √(8) = 2\sqrt2


UV = √((3 -5)^2 + (1 - 3)^2)= √(8) = 2\sqrt2


TV = √((1 -5)^2 + (1 - 1)^2)= √(16) = 4

From the above computations, the longest side is TV

So;


TV^2 = TU^2 + UV^2 --- Test of Pythagoras


4^2 = (2\sqrt 2)^2 +(2\sqrt 2)^2


16 = 8 + 8


16 = 16

The above points not make a right triangle

User Szorstki
by
4.7k points