33.4k views
5 votes
Determine whether each set of points make a right triangle using the Pythagorean Theorem. 1. A(3 , -4) B(-4 , 3) C(0 , 0) 2. O(2 , 5) P(-1 , 3) Q(7 , 4) 3. T(1 , 1) U(3 , 3) V(5 , 1)

User ZiMtyth
by
7.7k points

1 Answer

5 votes

Answer:


1.\ A(3 , -4)\ B(-4 , 3)\ C(0 , 0) -- Not right triangle


2.\ O(2 , 5)\ P(-1 , 3)\ Q(7 , 4) -- Not right triangle


3.\ T(1 , 1)\ U(3 , 3)\ V(5 , 1) -- Right triangle

Step-by-step explanation:

Required

Determine whether the given points make a right triangle


1.\ A(3 , -4)\ B(-4 , 3)\ C(0 , 0)

First, calculate the distance between each point using:


d = √((x_1 - x_2)^2 + (y_1 - y_2)^2)

So, we have:


AB = √((3 - -4)^2 + (-4 - 3)^2)= √(98) = 7\sqrt 2


BC = √((-4 - 0)^2 + (3 - 0)^2)= √(25) = 5


AC = √((3 - 0)^2 + (-4 - 0)^2)= √(25) = 5

From the above computations, the longest side is AB.

So;


AB^2 = BC^2 + AC^2 --- Test of Pythagoras


(7\sqrt 2)^2 = 5^2 + 5^2


98 = 25 + 25


98 \\e 50

The above points do not make a right triangle


2.\ O(2 , 5)\ P(-1 , 3)\ Q(7 , 4)

Calculate distance


OP = √((2 - -1)^2 + (5 - 3)^2)= √(13)


PQ = √((-1 -7)^2 + (3 - 4)^2)= √(65)


OQ = √((2 -7)^2 + (5 - 4)^2)= √(26)

From the above computations, the longest side is PQ

So;


PQ^2 = OP^2 + OQ^2 --- Test of Pythagoras


√(65)^2 = √(13)^2 + √(26)^2


65 = 13 + 26


65 \\e 39

The above points do not make a right triangle


3.\ T(1 , 1)\ U(3 , 3)\ V(5 , 1)

Calculate distance


TU = √((1 -3)^2 + (1 - 3)^2)= √(8) = 2\sqrt2


UV = √((3 -5)^2 + (1 - 3)^2)= √(8) = 2\sqrt2


TV = √((1 -5)^2 + (1 - 1)^2)= √(16) = 4

From the above computations, the longest side is TV

So;


TV^2 = TU^2 + UV^2 --- Test of Pythagoras


4^2 = (2\sqrt 2)^2 +(2\sqrt 2)^2


16 = 8 + 8


16 = 16

The above points not make a right triangle

User Szorstki
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories