171k views
3 votes
Pleaseeeee pleaseeee helppppppppp​

Pleaseeeee pleaseeee helppppppppp​-example-1

1 Answer

3 votes

Given:

The two vectors are:


\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k}


\overrightarrow{b}=\hat{i}-3\hat{j}+5\hat{k}

To find:

The value of
|\overrightarrow{a}* \overrightarrow{b}|.

Solution:

We have,


\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k}


\overrightarrow{b}=\hat{i}-3\hat{j}+5\hat{k}

The cross product of these two vectors is:


\overrightarrow{a}* \overrightarrow{b}=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\2&-1&1\\1&-3&5\end{vmatrix}


\overrightarrow{a}* \overrightarrow{b}=\hat{i}[(-1)(5)-(1)(-3)]-\hat{j}[(2)(5)-(1)(1)]+\hat{k}[(2)(-3)-(-1)(1)]


\overrightarrow{a}* \overrightarrow{b}=\hat{i}[-5+3]-\hat{j}[10-1]+\hat{k}[-6+1]


\overrightarrow{a}* \overrightarrow{b}=-2\hat{i}-9\hat{j}-5\hat{k}

Now the magnitude of the cross product is:


|\overrightarrow{a}* \overrightarrow{b}|=√((-2)^2+(-9)^2+(-5)^2)


|\overrightarrow{a}* \overrightarrow{b}|=√(4+81+25)


|\overrightarrow{a}* \overrightarrow{b}|=√(110)

Therefore, the value of
|\overrightarrow{a}* \overrightarrow{b}| is
√(110).

User Blurry Sterk
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories