171k views
3 votes
Pleaseeeee pleaseeee helppppppppp​

Pleaseeeee pleaseeee helppppppppp​-example-1

1 Answer

3 votes

Given:

The two vectors are:


\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k}


\overrightarrow{b}=\hat{i}-3\hat{j}+5\hat{k}

To find:

The value of
|\overrightarrow{a}* \overrightarrow{b}|.

Solution:

We have,


\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k}


\overrightarrow{b}=\hat{i}-3\hat{j}+5\hat{k}

The cross product of these two vectors is:


\overrightarrow{a}* \overrightarrow{b}=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\2&-1&1\\1&-3&5\end{vmatrix}


\overrightarrow{a}* \overrightarrow{b}=\hat{i}[(-1)(5)-(1)(-3)]-\hat{j}[(2)(5)-(1)(1)]+\hat{k}[(2)(-3)-(-1)(1)]


\overrightarrow{a}* \overrightarrow{b}=\hat{i}[-5+3]-\hat{j}[10-1]+\hat{k}[-6+1]


\overrightarrow{a}* \overrightarrow{b}=-2\hat{i}-9\hat{j}-5\hat{k}

Now the magnitude of the cross product is:


|\overrightarrow{a}* \overrightarrow{b}|=√((-2)^2+(-9)^2+(-5)^2)


|\overrightarrow{a}* \overrightarrow{b}|=√(4+81+25)


|\overrightarrow{a}* \overrightarrow{b}|=√(110)

Therefore, the value of
|\overrightarrow{a}* \overrightarrow{b}| is
√(110).

User Blurry Sterk
by
6.4k points