Given:
The quadratic equation is:
![6x^2-x-2=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/amhmxwoniovcgq1fih0rjpf69j1810dxpl.png)
To find:
The nature of the solutions by using the discriminant.
Solution:
If a quadratic equation is
, then its discriminant is:
![D=b^2-4ac](https://img.qammunity.org/2022/formulas/mathematics/college/1ctx3m2rjlzpix64rlcyvg5cr9ebdxpaae.png)
If D<0, then both roots are complex.
If D=0, then both roots are real and equal.
If D>0, then both roots are real and distinct.
We have,
![6x^2-x-2=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/amhmxwoniovcgq1fih0rjpf69j1810dxpl.png)
Here,
. So, the value of the discriminant is:
![D=(-1)^2-4(6)(-2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4aib9kieklx2t0985fe48ger4cimwqab3j.png)
![D=1+48](https://img.qammunity.org/2022/formulas/mathematics/high-school/842yjd7ixbcd1hrosauth154cee4fwweni.png)
![D=49](https://img.qammunity.org/2022/formulas/mathematics/high-school/637oiea4mc7dwbbhrf6ltftakjmhafgo5u.png)
Since
, then both roots are real and distinct.
Hence, the discriminant of the given quadratic equation is 49 and both roots are real and distinct.