Options
A. UV = 14 ft and m∠TUV = 45°
B. TU = 26 ft
C. m∠STU = 37° and m∠VTU = 37°
D. ST = 20 ft, UV = 14 ft, and m∠UST = 98°
E. m∠UST = 98° and m ∠TUV = 45°
Answer:
A. UV = 14 ft and m∠TUV = 45°
D. ST = 20 ft, UV = 14 ft, and m∠UST = 98°
Explanation:
Given
See attachment for triangle
Required
What proves that: ΔSTU ≅ ΔVTU using SAS
To prove their similarity, we must check the corresponding sides and angles of both triangles
First:
must equal
![\angle UVT](https://img.qammunity.org/2022/formulas/mathematics/high-school/gkcve28tgn4vb4knifop2ischg7e6fq7sl.png)
So:
![\angle UST = \angle UVT = 98](https://img.qammunity.org/2022/formulas/mathematics/high-school/8i4nmgfb59woxili8xpo3lue7ugzcmpzka.png)
Next:
UV must equal US.
So:
![UV = US = 14](https://img.qammunity.org/2022/formulas/mathematics/high-school/oqwl7l4z04rzavfvbhuus5iy8b7rvqjzdy.png)
Also:
ST must equal VT
So:
![ST = VT = 20](https://img.qammunity.org/2022/formulas/mathematics/high-school/xkv0epk23y9jp0y34ua6h35d1ldc9rjdcy.png)
Lastly
must equal
![\angle TUS](https://img.qammunity.org/2022/formulas/mathematics/high-school/72kiq9ulelqk3vswd3laokm0ftgke8ptci.png)
So:
![\angle TUV = \angle TUS = 45](https://img.qammunity.org/2022/formulas/mathematics/high-school/fnsrev10beycq8scl2u57jjre2c9cl3qkh.png)
Hence: Options A and D are correct