Answer:
The other endpoint is (11,-9)
Explanation:
Midpoint Formula
![\large\boxed{((x_1+x_2)/(2),(y_1+y_2)/(2) )}](https://img.qammunity.org/2022/formulas/mathematics/high-school/3smf60afjteqsdp6ko8kgqpwaao7h9if6k.png)
We already know the another endpoint which is (3,5). We substitute x = 3 and y = 5 in the formula. You can substitute in x1, x2 or y1, y2. I'll substitute in first x-term and first y-term instead.
![\large{\begin{cases} (3+x)/(2)=7\\(5+y)/(2)=-2 \end{cases}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/hhf9tdtgmgrel7y867g8fza5nuq8e5hj6f.png)
Because sum of two x-coordinate (along with y-coordinate) divided by two must equal to the midpoint (Let's say that you get the value of midpoint when using midpoint formula.)
Solve the equation for both terms.
![\large{\begin{cases} (3+x)/(2)=7\\(5+y)/(2)=-2 \end{cases}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/hhf9tdtgmgrel7y867g8fza5nuq8e5hj6f.png)
Cancel the denominator by multiplying the whole equation by 2.
![\large{\begin{cases} (3+x)/(2)(2)=7(2)\\(5+y)/(2)(2)=-2(2) \end{cases}}\\\large{\begin{cases} 3+x=14\\ 5+y=-4 \end{cases}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/zcf6314iu6lpjrd0za0p492af4hv5wz9a3.png)
Isolate x-term and y-term.
![\end{cases}}\\\large{\begin{cases} 3+x=14\\ 5+y=-4 \end{cases}}\\\end{cases}}\\\large{\begin{cases} x=14-3\\ y=-4-5 \end{cases}}\\\end{cases}}\\\large{\begin{cases} x=11\\ y=-9 \end{cases}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/5weey3emhnkiy2bovgcqoz4xj27w22f2be.png)
Therefore, when x = 11, y = -9. We can write in ordered pair as (11,-9). The ordered pair (11,-9) is our other endpoint of the line segment. This can be proved by using the distance formula between midpoint and endpoints.
Note: The distance of (3,5) and (7,-2) must equal to the distance of (11,-9) and (7,-2)