Given:
Focus of a parabola =
![\left(1,(1)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/nehg5epz05cjnckyd52o7zypfbbrge9154.png)
Directrix:
![y=3](https://img.qammunity.org/2022/formulas/mathematics/high-school/y9iff074w2mzowsy1i3jmibzn7aqz18mb0.png)
To find:
The equation of the parabola.
Solution:
The equation of a vertical parabola is:
...(A)
Where,
is center,
is focus and
is the directrix.
On comparing the focus, we get
![(h,k+a)=\left(1,(1)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/3vxlmrr77jntqsvikz4kdorb8ykabl0jm7.png)
![h=1](https://img.qammunity.org/2022/formulas/mathematics/high-school/u7hhu20f8lknt95t4fygwh6lgccammvuep.png)
...(i)
On comparing the directrix, we get
...(ii)
Adding (i) and (ii), we get
![2k=(7)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/crgcwp98gfuaxexflam5wxja6wda3sdvll.png)
![k=(7)/(4)](https://img.qammunity.org/2022/formulas/geography/college/iplhrm39fx6zbsb4g6yfjygx8r1ievxkbp.png)
Putting
is (i), we get
![(7)/(4)+a=(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/tk36a8wsl4xhaimclb6qkma40w3bmgh28c.png)
![a=(1)/(2)-(7)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/uc79ntf7wvcaoih54m3tnr3ub7bdc62ts2.png)
![a=(-5)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ka528oojbsnjlnplm1ux9lq5kor0k1ji0w.png)
Putting
in (A), we get
![y-(7)/(4)=(1)/(4* (-5)/(4))(x-1)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/5qob3dy5qb7jgzfvew5ynxe7ecrqvgoi50.png)
![y-(7)/(4)=(-1)/(5)(x^2-2x+1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/eut429bvyua0uhe46vbwnuv67xps4vr31k.png)
![y-(7)/(4)=-(1)/(5)(x^2)-(1)/(5)(-2x)-(1)/(5)(1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/fqja629y0f5bqfhxaeiadyaqpj3r47txdg.png)
![y=-(1)/(5)x^2+(2)/(5)x-(1)/(5)+(7)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qodarguuf4ha5bybv2wccd1h5uqs6digqj.png)
On further simplification, we get
![y=-(1)/(5)x^2+(2)/(5)x+(35-4)/(20)](https://img.qammunity.org/2022/formulas/mathematics/high-school/8stjgb9vd69d6kgfim5jqz5410bh4sbv6g.png)
![y=-(1)/(5)x^2+(2)/(5)x+(31)/(20)](https://img.qammunity.org/2022/formulas/mathematics/high-school/62b693srue2wpmeqwkuq5uv8pxph4kou59.png)
Therefore, the equation of the parabola is
.
Note: Option C is correct but the leading coefficient should be negative.