Given:
![(2x^3+4x^2-35x+15)/ (x-3)](https://img.qammunity.org/2022/formulas/mathematics/college/nesxyjk4oa3xgqlf2n2ybfq26t058bvdpm.png)
To find:
The quotient by using the synthetic division.
Solution:
We have,
![(2x^3+4x^2-35x+15)/ (x-3)](https://img.qammunity.org/2022/formulas/mathematics/college/nesxyjk4oa3xgqlf2n2ybfq26t058bvdpm.png)
Here,
Dividend =
![(2x^3+4x^2-35x+15)](https://img.qammunity.org/2022/formulas/mathematics/college/b9l1qaseypc1x358yfw0ev8d0i3df1nymo.png)
Divisor =
![x-3](https://img.qammunity.org/2022/formulas/mathematics/college/bmk34gxtggzvhzbgez702bsg9v3cm2xgh3.png)
The coefficient of dividend are
. Write the coefficients of the dividend on the top row and we need to use 3 as divisor for synthetic division. The synthetic division is show below:
![3 | 2\quad \quad 4\quad \quad -35\quad \quad 15\\\quad{}\quad{} \quad \quad \ 6\quad \quad \ \ \ 30\quad -15\\\overline{\quad 2\quad \quad 10\quad \quad -5\quad \quad 0\ \ \ }](https://img.qammunity.org/2022/formulas/mathematics/college/t8iy5rg6lakbf1bfoeg129v1a2f248x92k.png)
The bottom row represents the coefficients of quotient but the last element of bottom row is the remainder.
Degree of dividend is 3 and degree of division is 1. So, the degree of quotient must be
.
The quotient is
and the reminder is 0.
Therefore, the correct option is D.