77.1k views
24 votes
How to solve x in this equation!

How to solve x in this equation!-example-1
User Bhawan
by
4.5k points

2 Answers

11 votes


\huge \bf༆ Answer ༄

Let's solve ~


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf4 {}^{ ( 3 )/(4) } * 2 {}^{ {x}^{} } = 16 {}^{ (2)/(5) }


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf(2 {}^(2) ) {}^{ ( 3 )/(4) } * 2 {}^{ {x}^{} } =( 2 {}^(4)) {}^{ (2)/(5) }


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf2 {}^{} {}^{ ( 3 )/(2) } * 2 {}^{ {x}^{} } =2 {}^{} {}^{ (8)/(5) }


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf2 {}^{} {}^{( ( 3 )/(2) + } {}^{ {x)}^{} } =2 {}^{} {}^{ (8)/(5) }


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf (3)/(2) + x = (8)/(5)


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf x = (8)/(5) - (3)/(2)


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf x = (16 - 15)/(10)


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf x = (1)/(10) \: \: or \: \: \: 0.1

User Supun Abesekara
by
5.5k points
1 vote

Answer:

x = 1/10

Explanation:


2^(x) = 2^{(8)/(5) } / 2^{(6)/(4) }


2^(x) =
2^{(8)/(5)-(6)/(4) }


2^(x) =
2^{(1)/(10) }


x = (1)/(10)

User TMSCH
by
3.8k points