77.1k views
24 votes
How to solve x in this equation!

How to solve x in this equation!-example-1
User Bhawan
by
8.5k points

2 Answers

11 votes


\huge \bf༆ Answer ༄

Let's solve ~


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf4 {}^{ ( 3 )/(4) } * 2 {}^{ {x}^{} } = 16 {}^{ (2)/(5) }


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf(2 {}^(2) ) {}^{ ( 3 )/(4) } * 2 {}^{ {x}^{} } =( 2 {}^(4)) {}^{ (2)/(5) }


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf2 {}^{} {}^{ ( 3 )/(2) } * 2 {}^{ {x}^{} } =2 {}^{} {}^{ (8)/(5) }


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf2 {}^{} {}^{( ( 3 )/(2) + } {}^{ {x)}^{} } =2 {}^{} {}^{ (8)/(5) }


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf (3)/(2) + x = (8)/(5)


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf x = (8)/(5) - (3)/(2)


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf x = (16 - 15)/(10)


{ \qquad{ \sf{ \dashrightarrow}}} \: \: \sf x = (1)/(10) \: \: or \: \: \: 0.1

User Supun Abesekara
by
9.5k points
1 vote

Answer:

x = 1/10

Explanation:


2^(x) = 2^{(8)/(5) } / 2^{(6)/(4) }


2^(x) =
2^{(8)/(5)-(6)/(4) }


2^(x) =
2^{(1)/(10) }


x = (1)/(10)

User TMSCH
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories