Answer:
Look below
Explanation:
(a) The area of the shaded region is the area of the larger rectangle minus the area of the smaller rectangle.
Start by finding the area of the larger rectangle:
![A=lw\\A=4x*8x\\A=32x^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/n5y7ynk9wfpjypegcqyvqdaktujsik469z.png)
Then, find the area of the smaller rectangle:
![A=lw\\A=4y*2y\\A=8y^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/s1uzszp0hx4rfvgzgq62mlh9d2nx8p4026.png)
Therefore the area of the shaded region is:
![32x^2-8y^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/86gp69kuhv020qkqpuyaqko8j989bkmudo.png)
Note that we still need to factor it...
![8(4x^2-y^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ecrd8jik7u6b23d2de7g9a4ac97kmrg2fx.png)
![4x^2-y^2\ \text{can be written as a difference of squares}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ra694ltup6qd3lst7xb6pa6s3w6zna2q62.png)
![a^2-b^2=(a-b)(a+b)](https://img.qammunity.org/2023/formulas/mathematics/college/w18orszina3sp5z1l01ymmo3ajxb5z1le4.png)
![4x^2-y^2=(2x)^2-(y)^2=(2x-y)(2x+y)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nxfsd9l92pawop5emxkby8tepxlf033qn4.png)
Therefore the fully factored form is:
![8(2x-y)(2x+y)](https://img.qammunity.org/2023/formulas/mathematics/high-school/c1nctzx4c1dpd1x7xqtkmpngsge4f089s1.png)
(b) The area of the shaded region is the area of the larger circle minus the area of the smaller circle.
Start by finding the area of the larger circle:
![A=\pi r^2\\A=\pi R^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/3ff23jag2u6x7jfkn2afu45ypjk6hg3jaz.png)
The area of the smaller circle is:
![A=\pi r^2\\](https://img.qammunity.org/2023/formulas/mathematics/high-school/oy7w6rirmg1g07ucck8tdtm1qy33r13hvo.png)
Therefore the difference is:
![\pi R^2-\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/wqspbmlwipyh48file24bqr41psegfeluf.png)
We can factor out
![\pi](https://img.qammunity.org/2023/formulas/mathematics/high-school/s4a9atp2j2mg6r59j0huycjcajdeqo7hpu.png)
![\pi(R^2-r^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/tj1uzdkdkoegqrvu99gleubc6rg9gopr6j.png)
Note this can again be written as a difference of squares:
![(R)^2-(r)^2=(R-r)(R+r)](https://img.qammunity.org/2023/formulas/mathematics/high-school/uaek724wx7zva6ayna9wa6j96l4tte4c3h.png)
Therefore the fully factored form is:
![\pi(R-r)(R+r)](https://img.qammunity.org/2023/formulas/mathematics/high-school/9nzogtm8aekituqy53mfocjfwwjhsrb5wo.png)