Answer:
Step-by-step explanation:
Given that:
diameter = 100 mm
initial temperature = 500 ° C
Conventional coefficient = 500 W/m^2 K
length = 1 m
We obtain the following data from the tables A-1;
For the stainless steel of the rod
![\overline T = 548 \ K](https://img.qammunity.org/2022/formulas/engineering/college/1vbyqe3dspghaz6q0bwn5d3x1cwbwpt8xj.png)
![\rho = 7900 \ kg/m^3](https://img.qammunity.org/2022/formulas/engineering/college/a51up8ghdtg6tgxnlp8fi8b63ayxfad1xo.png)
![K = 19.0 \ W/mk \\ \\ C_p = 545 \ J/kg.K](https://img.qammunity.org/2022/formulas/engineering/college/xdjxvvbfc4wndkj5r4bb6ym95io0kf2x1k.png)
![\alpha = 4.40 * 10^(-6) \ m^2/s \\ \\ B_i = (h(\rho/4))/(K) \\ \\ =0.657](https://img.qammunity.org/2022/formulas/engineering/college/80m2zy1altx5lppomexg13pb2rg55p6tx8.png)
Here, we can't apply the lumped capacitance method, since Bi > 0.1
![\theta_o = (T_o-T_(\infty))/(T_i -T_\infty)} \\ \\ \theta_o = (50-30)/(500 -30)} \\ \\ \theta_o = 0.0426\\](https://img.qammunity.org/2022/formulas/engineering/college/kr74il49reesm02th2yo4pv5vlcc2j92xg.png)
![0.0426 = c_1 \ exp (- E^2_1 F_o_)\\ \\ \\ 0.0426 = 1.1382 \ exp (-10.9287)^2 \ f_o \\ \\ = f_o = (In(0.0374))/(0.863) \\ \\ f_o = 3.81](https://img.qammunity.org/2022/formulas/engineering/college/zg30jwup89nxl0yoezrclkhenpsx5b90pp.png)
![t_f = (f_o r^2)/(\alpha) \\ \\ t_f = (3.81 * (0.05)^2)/(4.40 * 10^(-6)) \\ \\ t_f= 2162.5 \\ \\ t_f = 36 mins](https://img.qammunity.org/2022/formulas/engineering/college/vyzm1h2ehlukq3ex9cg1qbl7744sdurlbn.png)
However, on a single rod, the energy extracted is:
![\theta = pcv (T_i - T_(\infty) )(1 - (2 \theta)/(c) J_1 (\zeta) ) \\ \\ = 7900 \\times 546 * 0.007854 * (500 -300) (1 - (2 * 0.0426)/(1.3643)) \\ \\ \theta = 1.54 * 10^7 \ J](https://img.qammunity.org/2022/formulas/engineering/college/hyu0k6e2pzngaf57r4y8hmi35jiksrrt28.png)
Hence, for centerline temperature at 50 °C;
The surface temperature is:
![T(r_o,t) = T_(\infty) +(T_1 -T_(\infty)) \theta_o \ J_o(\zeta_1) \\ \\ = 30 + (500-30) * 0.0426 * 0.5386 \\ \\ \mathbf{T(r_o,t) = 41.69 ^0 \ C}](https://img.qammunity.org/2022/formulas/engineering/college/us0xb2myttlh7ooa04dhqqkw8fpzq0kfcw.png)