80.7k views
13 votes
What is the vertex of the quadratic function below?

y = x2 - 8x+1
A. (4, -15)
B. (8, 1)
C. (-8, 129)
D. (-4, 15)

User Beejm
by
4.6k points

2 Answers

8 votes

Answer:

A. (4, -15)

Explanation:


\underline{\mathrm{Parabola\:equation\:in\:polynomial\:form}}


\mathrm{The\:vertex\:of\:an\:up-down\:facing\:parabola\:of\:the\:form}\:y=ax^2+bx+c\:\mathrm{is}\:x_v=-(b)/(2a)


\mathrm{The\:parabola\:params\:are:}


a=1,\:b=-8,\:c=1


x_v=-(b)/(2a)


x_v=-(\left(-8\right))/(2\cdot \:1)


x_v=4


\mathrm{Plug\:in}\:x_v=4\:\mathrm{to\:find\:the}\:y_v\mathrm{value}


y_v=-15


\mathrm{Therefore\:the\:parabola\:vertex\:is}


\left(4,\:-15\right)


\mathrm{If}\:a<0,\:\mathrm{then\:the\:vertex\:is\:a\:maximum\:value}


\mathrm{If}\:a>0,\:\mathrm{then\:the\:vertex\:is\:a\:minimum\:value}


a=1


\mathrm{Vertex\:of}\:x^2-8x+1:\quad \mathrm{Minimum}\space\left(4,\:-15\right)

User Protob
by
6.0k points
14 votes

Answer:

Option A: (4, -15).

Explanation:

Given the quadratic function, y = x² - 8x + 1, where a = 1, b = -8, and c = 1:

Solve for the x-coordinate of the vertex:

We can use the following equation to solve for the x-coordinate of the vertex:


\displaystyle\mathsf{x\:=\:(-b)/(2a)}

Substitute the given values into the formula:


\displaystyle\mathsf{x\:=\:(-b)/(2a)\:=\:(-(-8))/(2(1))\:=\:(8)/(2)\:=\:4}

Hence, the x-coordinate of the vertex is 4.

Solve for the y-coordinate of the vertex:

Next, substitute the x-coordinate of the vertex into the given quadratic function to solve for its corresponding y-coordinate:

y = x² - 8x + 1

y = (4)² - 8(4) + 1

y = 16 - 32 + 1

y = -15

Therefore, the vertex of the given quadratic function, y = x² - 8x + 1, is: x = 4, y = -15, or (4, -15). Thus, the correct answer is Option A: (4, -15).

User WolvorinePk
by
4.9k points