Answer:
Option A: (4, -15).
Explanation:
Given the quadratic function, y = x² - 8x + 1, where a = 1, b = -8, and c = 1:
Solve for the x-coordinate of the vertex:
We can use the following equation to solve for the x-coordinate of the vertex:
![\displaystyle\mathsf{x\:=\:(-b)/(2a)}](https://img.qammunity.org/2023/formulas/mathematics/college/7pfve9vyegvcav6a398fq4gpw9qrahuo1t.png)
Substitute the given values into the formula:
![\displaystyle\mathsf{x\:=\:(-b)/(2a)\:=\:(-(-8))/(2(1))\:=\:(8)/(2)\:=\:4}](https://img.qammunity.org/2023/formulas/mathematics/college/h25t5h6yped758fsph3ii80cw28trbr4cw.png)
Hence, the x-coordinate of the vertex is 4.
Solve for the y-coordinate of the vertex:
Next, substitute the x-coordinate of the vertex into the given quadratic function to solve for its corresponding y-coordinate:
y = x² - 8x + 1
y = (4)² - 8(4) + 1
y = 16 - 32 + 1
y = -15
Therefore, the vertex of the given quadratic function, y = x² - 8x + 1, is: x = 4, y = -15, or (4, -15). Thus, the correct answer is Option A: (4, -15).