Answer:
a) 0.39984 = 39.984% probability of no orders in five minutes.
b) 0.06563 = 6.563% probability of 3 or more orders in five minutes.
c) The length of time is 0.63 hours
Explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
![P(X = x) = (e^(-\mu)*\mu^(x))/((x)!)](https://img.qammunity.org/2022/formulas/mathematics/college/fc9bfg9bauetugxxr4o8egdqz83cs0jk74.png)
In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
Orders arrive at a Web site according to a Poisson process with a mean of 11 per hour.
This means that
, in which h is the number of hours.
a) Probability of no orders in five minutes.
Five minutes means that
, so
![\mu = (11)/(12) = 0.9167](https://img.qammunity.org/2022/formulas/mathematics/college/2ylg882gqv6tobve7au7kcp3y2x0ghtppt.png)
This probability is P(X = 0). So
![P(X = x) = (e^(-\mu)*\mu^(x))/((x)!)](https://img.qammunity.org/2022/formulas/mathematics/college/fc9bfg9bauetugxxr4o8egdqz83cs0jk74.png)
![P(X = 0) = (e^(-0.9167)*(0.9167)^(0))/((0)!) = 0.39984](https://img.qammunity.org/2022/formulas/mathematics/college/vd1o4a7q9afr8yzireyy2orvd7or2ogukw.png)
0.39984 = 39.984% probability of no orders in five minutes.
b) Probability of 3 or more orders in five minutes.
This is:
![P(X \geq 3) = 1 - P(X < 3)](https://img.qammunity.org/2022/formulas/mathematics/college/dxp22fou3upy50nfp4vgl2lwflitc1sa9q.png)
In which
![P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)](https://img.qammunity.org/2022/formulas/mathematics/college/efrxzf4lk56erruz6bhxatg2btsy3l33cr.png)
So
![P(X = x) = (e^(-\mu)*\mu^(x))/((x)!)](https://img.qammunity.org/2022/formulas/mathematics/college/fc9bfg9bauetugxxr4o8egdqz83cs0jk74.png)
![P(X = 0) = (e^(-0.9167)*(0.9167)^(0))/((0)!) = 0.39984](https://img.qammunity.org/2022/formulas/mathematics/college/vd1o4a7q9afr8yzireyy2orvd7or2ogukw.png)
![P(X = 1) = (e^(-0.9167)*(0.9167)^(1))/((1)!) = 0.36653](https://img.qammunity.org/2022/formulas/mathematics/college/wj9bt4z1t9j49l3jm47ewgtrp2nqd8ulmu.png)
![P(X = 2) = (e^(-0.9167)*(0.9167)^(2))/((2)!) = 0.168](https://img.qammunity.org/2022/formulas/mathematics/college/vystyv4yuf4be2owkaallmiehw93zxcu55.png)
![P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 0.39984 + 0.36653 + 0.168 = 0.93437](https://img.qammunity.org/2022/formulas/mathematics/college/nqik3jswhtzeg0aog5075py43m8kz7yjz2.png)
![P(X \geq 3) = 1 - P(X < 3) = 1 - 0.93437 = 0.06563](https://img.qammunity.org/2022/formulas/mathematics/college/hzwy0ygl4koe0k0mxdbbfryiuep4qyfbrp.png)
0.06563 = 6.563% probability of 3 or more orders in five minutes.
c) Length of a time interval such that the probability of no orders in an interval of this length is 0.001.
This is h for which:
![P(X = 0) = 0.001](https://img.qammunity.org/2022/formulas/mathematics/college/idqjk2kuf6mzn8o1pm3vjbli2kw5ok55p1.png)
We have that:
![P(X = 0) = e^(-\mu)](https://img.qammunity.org/2022/formulas/mathematics/college/e43dko7zoxm0ijq0ow1iobs46vk7ce3c9l.png)
And
![\mu = 11h](https://img.qammunity.org/2022/formulas/mathematics/college/y4k5b5gl7zuha9g4rnt9jbiq6jhhk1c0xg.png)
So
![P(X = 0) = 0.001](https://img.qammunity.org/2022/formulas/mathematics/college/idqjk2kuf6mzn8o1pm3vjbli2kw5ok55p1.png)
![e^(-11h) = 0.001](https://img.qammunity.org/2022/formulas/mathematics/college/dnhgdi0dl12tpgtrxh9h5oy8qf0d9iketm.png)
![\ln{e^(-11h)} = ln(0.001)](https://img.qammunity.org/2022/formulas/mathematics/college/q5emv38krgindkctnm398nf0wtcol59sfp.png)
![-11h = ln(0.001)](https://img.qammunity.org/2022/formulas/mathematics/college/791q4i341y3zanmgsvc5rxts23423f3bc5.png)
![h =-(ln(0.001))/(11)](https://img.qammunity.org/2022/formulas/mathematics/college/fho920u5t2le2wlbwebn7gh9ek2kf3bgv8.png)
![h = 0.63](https://img.qammunity.org/2022/formulas/mathematics/college/7ce2aw2ze4ztto01htsbkjeb7sg6srxjpi.png)
The length of time is 0.63 hours