203k views
17 votes
Solve the following absolute value inequality

Solve the following absolute value inequality-example-1
User Flukus
by
4.2k points

2 Answers

6 votes

Answer:

x < -1

x > -13

Explanation:

Hello!

First, isolate the absolute value bracket:


  • $(4|x + 7|)/(3) < 8$

  • 4|x + 7| < 24

  • |x + 7| < 6

Use the absolute value inequality rule:


|x| < y \text {, if y is} \geq 0:\\-y < x < y

Solve for x


  • |x + 7| < 6

  • -6 < x + 7 < 6

  • -6 - 7 < x < 6 - 7

  • -13 < x < -1

The solution is:

  • x < -1
  • x > -13

User JOpuckman
by
4.0k points
4 votes

Answer:

x < -1

x > -13

Explanation:


(4|x+7|)/(3)<8


\implies 4|x+7|<24


\implies |x+7|<6


\textsf{Therefore} \ \ x+7<6 \ \ \textsf{and} \ -(x+7)<6


x+7<6


\implies x<-1


-(x+7)<6


\implies -x-7<6


\implies -x<13


\implies x > -13

User WizardsOfWor
by
4.5k points