Answer:
(-infinity, -32/81] U (0, positive infintiy).
( use the sideways 8 symbol for infinity).
Explanation:
The range is all possible y values in a function.
We can find the inverse of the function to find the range.
![y = \frac{8}{ {x}^(2) - 7x - 8 }](https://img.qammunity.org/2022/formulas/mathematics/college/g89q9byzl44e0zusd0o996b3vxhpnqtooy.png)
Replace x with y
![x = \frac{8}{ {y}^(2) - 7y - 8 }](https://img.qammunity.org/2022/formulas/mathematics/college/x5pcqq87ntiqi4vxoekt59vonvo7os1im5.png)
Write the LCD as two binomial,
![x = (8)/((y + 1)(y - 8))](https://img.qammunity.org/2022/formulas/mathematics/college/wfir9xm8bof6wkfub2i41yhv50vs7hdytc.png)
Multiply both sides by both binomial
![x(y + 1)(y - 8) = 8](https://img.qammunity.org/2022/formulas/mathematics/college/6teah3cawzn7zb0vlw0u4k8gszavqgfwo3.png)
![(xy + x)(y - 8) = 8](https://img.qammunity.org/2022/formulas/mathematics/college/cxh5wlvkn5r0beo9h6eywscgvsi54y21pb.png)
![x {y}^(2) - 8yx + xy - 8x = 8](https://img.qammunity.org/2022/formulas/mathematics/college/p825tpyxhpmp24if79sr49yqv3bbfn2m30.png)
![xy {}^(2) - 8yx + xy = 8 + 8x](https://img.qammunity.org/2022/formulas/mathematics/college/gvt64h9cjw5v73yn9g601f03qwzauvbflf.png)
![y( {x}^(2) - 8x + x) = 8 + 8x](https://img.qammunity.org/2022/formulas/mathematics/college/hhyuekl4dc759naf7cyujhajznmq2ymv40.png)
![\frac{8 + 8x}{ {x}^(2) - 7x }](https://img.qammunity.org/2022/formulas/mathematics/college/zep0lfdn9h7tnrg789rf45russm8drft2r.png)
![{x}^(2) - 7x = 0](https://img.qammunity.org/2022/formulas/mathematics/college/65f2qd1svvt1uci4gjflsdp0brd8uhdv7c.png)
![{x}^(2) - 7x + 12.25 = 12.25](https://img.qammunity.org/2022/formulas/mathematics/college/a67f4g9mvcpb90e6tvj4q770vtcfsvhvjv.png)
![(x - 3.5) {}^(2) = 12.25](https://img.qammunity.org/2022/formulas/mathematics/college/i72ny4pb5i2qp0ywkc6e4jtqgpg829qgld.png)
![(x - 3.5) = 3.5](https://img.qammunity.org/2022/formulas/mathematics/college/damgv5l67utfsmlr8frjwma04jaln4d3k4.png)
![x = 3.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/g5a5qdssrn3549kiex48p3j5w1mz68ddzx.png)
Plug that in to the function to find it range.
We get approximately
![- (35)/(81)](https://img.qammunity.org/2022/formulas/mathematics/college/vc3aclup73jrv6e0jgfl4es9og9i6t53dm.png)
So this means a point on our function must include -35/81.
The vertical asymptote is 0 so our y cannot be zero but it goes infinitely up so our range is
(-infinity, -32/81]U (0, positive infintiy).
( use the sideways 8 symbol for infinity).