Given:
The given function is:
![f(x)=-(x-2)^2+9](https://img.qammunity.org/2022/formulas/mathematics/high-school/taw351ekir03vgoacp5pui2vbo2wq5iugh.png)
To find:
The transformations, intercepts and the vertex.
Solution:
The vertex form of a parabola is:
...(i)
Where, a is a constant and (h,k) is vertex.
If a<0, then the graph of parent quadratic function
reflect across the x-axis.
If h<0, then the graph of parent function shifts h units left and if h>0, then the graph of parent function shifts h units right.
If k<0, then the graph of parent function shifts k units down and if k>0, then the graph of parent function shifts k units up.
We have,
...(ii)
On comparing (i) and (ii), we get
![a=-1,h=2,k=9](https://img.qammunity.org/2022/formulas/mathematics/high-school/f9tedjg8d15f9ijsviowl4az42ackljzqa.png)
So, the graph of the parent function reflected across the x-axis, and shifts 2 units right and 9 units up.
Putting x=0 in (ii), we get
![f(0)=-(0-2)^2+9](https://img.qammunity.org/2022/formulas/mathematics/high-school/81r4wwne3uputo74qxwq7hk4vcnv1rxdms.png)
![f(0)=-4+9](https://img.qammunity.org/2022/formulas/mathematics/high-school/z9ps5mlp1cbvjm7xcygxfvau017uh68bma.png)
![f(0)=5](https://img.qammunity.org/2022/formulas/mathematics/high-school/hbo6yzskx6g9r53ilac4499pjbjts1pv6h.png)
The y-intercept is 5.
Putting f(x)=0 in (ii), we get
![0=-(x-2)^2+9](https://img.qammunity.org/2022/formulas/mathematics/high-school/bjkzlxad0munkdh76j2afigcy2s7rvyx00.png)
![(x-2)^2=9](https://img.qammunity.org/2022/formulas/mathematics/high-school/vf2jzkv1djstauzyt9mo6ab352pei1yvii.png)
Taking square root on both sides, we get
![(x-2)=\pm √(9)](https://img.qammunity.org/2022/formulas/mathematics/high-school/kacwz5up9ch547bli8mlwmeqzwpo1x2oot.png)
![x=\pm 3+2](https://img.qammunity.org/2022/formulas/mathematics/high-school/jnx8cxprwlzzgcuxqxpyo8f2tiaz6wqmm0.png)
![x=3+2\text{ and }x=-3+2](https://img.qammunity.org/2022/formulas/mathematics/high-school/u2ixm5qdb87u7c71cupedqdqtmoe7tfchu.png)
![x=5\text{ and }x=-1](https://img.qammunity.org/2022/formulas/mathematics/high-school/m0prfa2olu7ver9jr2k9b9vfgy0flkcfhf.png)
Therefore, the x-intercepts are -1 and 5.
The values of h and k are 2 and 9 respectively and (h,k) is the vertex of the parabola.
Therefore, the vertex of the parabola is (2,9).