125k views
3 votes
Evaluate the following definite integral​

Evaluate the following definite integral​-example-1
User Journeyer
by
4.1k points

1 Answer

6 votes

Answer:


\displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3)

General Formulas and Concepts:

Symbols

  • e (Euler's number) ≈ 2.71828

Algebra I

  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

  • U-Solve

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx

Step 2: Integrate Pt. 1

  1. [Integrand] Rewrite [Exponential Rule - Multiplying]:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = \int\limits^1_0 {x^5e^(x^3)e} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = e\int\limits^1_0 {x^5e^(x^3)} \, dx

Step 3: Integrate Pt. 2

Identify variables for u-solve.

  1. Set u:
    \displaystyle u = x^3
  2. [u] Differentiate [Basic Power Rule]:
    \displaystyle du = 3x^2 \ dx
  3. [u] Rewrite:
    \displaystyle x = \sqrt[3]{u}
  4. [du] Rewrite:
    \displaystyle dx = (1)/(3x^2) \ du

Step 4: Integrate Pt. 3

  1. [Integral] U-Solve:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}(1)/(3x^2)} \, du
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3)\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}(1)/(x^2)} \, du
  3. [Integral] Simplify:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3)\int\limits^1_0 {x^3e^u} \, du
  4. [Integrand] U-Solve:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3)\int\limits^1_0 {ue^u} \, du

Step 5: integrate Pt. 4

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = u
  2. [u] Differentiate [Basic Power Rule]:
    \displaystyle du = du
  3. Set dv:
    \displaystyle dv = e^u \ du
  4. [dv] Exponential Integration:
    \displaystyle v = e^u

Step 6: Integrate Pt. 5

  1. [Integral] Integration by Parts:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3) \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]
  2. [Integral] Exponential Integration:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3) \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3)[ e - e ]
  4. Simplify:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User AppHandwerker
by
4.5k points