125k views
3 votes
Evaluate the following definite integral​

Evaluate the following definite integral​-example-1
User Journeyer
by
7.2k points

1 Answer

6 votes

Answer:


\displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3)

General Formulas and Concepts:

Symbols

  • e (Euler's number) ≈ 2.71828

Algebra I

  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

  • U-Solve

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx

Step 2: Integrate Pt. 1

  1. [Integrand] Rewrite [Exponential Rule - Multiplying]:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = \int\limits^1_0 {x^5e^(x^3)e} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = e\int\limits^1_0 {x^5e^(x^3)} \, dx

Step 3: Integrate Pt. 2

Identify variables for u-solve.

  1. Set u:
    \displaystyle u = x^3
  2. [u] Differentiate [Basic Power Rule]:
    \displaystyle du = 3x^2 \ dx
  3. [u] Rewrite:
    \displaystyle x = \sqrt[3]{u}
  4. [du] Rewrite:
    \displaystyle dx = (1)/(3x^2) \ du

Step 4: Integrate Pt. 3

  1. [Integral] U-Solve:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}(1)/(3x^2)} \, du
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3)\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}(1)/(x^2)} \, du
  3. [Integral] Simplify:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3)\int\limits^1_0 {x^3e^u} \, du
  4. [Integrand] U-Solve:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3)\int\limits^1_0 {ue^u} \, du

Step 5: integrate Pt. 4

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = u
  2. [u] Differentiate [Basic Power Rule]:
    \displaystyle du = du
  3. Set dv:
    \displaystyle dv = e^u \ du
  4. [dv] Exponential Integration:
    \displaystyle v = e^u

Step 6: Integrate Pt. 5

  1. [Integral] Integration by Parts:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3) \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]
  2. [Integral] Exponential Integration:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3) \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3)[ e - e ]
  4. Simplify:
    \displaystyle \int\limits^1_0 {x^5e^(x^3 + 1)} \, dx = (e)/(3)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User AppHandwerker
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories