Given:
![ST=4y,TU=2y+6](https://img.qammunity.org/2022/formulas/mathematics/high-school/mek70m10sumqofqrfwkmi7ncxdkzpcgyr5.png)
To find:
The value of y, ST and TU.
Solution:
In triangle STV and UTV,
(Given right angles)
(Given)
(Common side)
The corresponding two angles and a non included sides in both triangles are congruent. So, the triangles are congruent by using AAS congruence postulate.
(AAS congruence postulate)
Corresponding parts of congruent triangles are congruent. So,
(CPCTC)
![4y=2y+6](https://img.qammunity.org/2022/formulas/mathematics/high-school/q8nfbviqbg2taz1qm21sofsszv3q853cna.png)
![4y-2y=6](https://img.qammunity.org/2022/formulas/mathematics/high-school/dvf9xoar2arj1wiumlkffnw6x148u04a66.png)
![2y=6](https://img.qammunity.org/2022/formulas/mathematics/high-school/1gagn6dc2csuktdd22onuzl3ab40m7m6a1.png)
![y=3](https://img.qammunity.org/2022/formulas/mathematics/high-school/y9iff074w2mzowsy1i3jmibzn7aqz18mb0.png)
Now,
![ST=4y](https://img.qammunity.org/2022/formulas/mathematics/high-school/686l47ypv19gh77izkqsmj5d1f1nimd1i0.png)
![ST=4(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/5a1pfkgrlk67ggipubvxqlwunumg2xf4jh.png)
![ST=12](https://img.qammunity.org/2022/formulas/mathematics/high-school/1co1wmh0wqisp61cmqizz5m5u2k0t6kocj.png)
And,
![TU=2y+6](https://img.qammunity.org/2022/formulas/mathematics/high-school/lowdpvhzzuiwz3kr0psc1b4o9q5h18mxcp.png)
![TU=2(3)+6](https://img.qammunity.org/2022/formulas/mathematics/high-school/cu78kta8kf5iv12j2jxlcf67mi9bzeeyat.png)
![TU=6+6](https://img.qammunity.org/2022/formulas/mathematics/high-school/seuxok7rcl4t9vosomh38o0b87z8kx35nz.png)
![TU=12](https://img.qammunity.org/2022/formulas/mathematics/high-school/wr0qdf580rlsu7kbb77blegrmr2q5ntydj.png)
Therefore,
.