Given:
Two jugs are similar. The smaller jug has radius 4 cm and the bigger jug has radius 6 cm and surface area 125 cm².
To find:
The area of the smaller jug.
Solution:
If two figures are similar, then the ratio of their areas is proportional to the square of the corresponding sides of the figures.
Two jugs are similar. So,
![\frac{\text{Area of smaller jug}}{\text{Area of bigger jug}}=\frac{(\text{Radius of smaller jug})^2}{(\text{Radius of bigger jug})^2}](https://img.qammunity.org/2022/formulas/mathematics/college/f4exohetbwiok9huivn2el7uz4nfv06j03.png)
![\frac{\text{Area of smaller jug}}{125}=((4)^2)/((6)^2)](https://img.qammunity.org/2022/formulas/mathematics/college/luw6izj4855u5w5gruhgnri0uwtpai3d79.png)
![\frac{\text{Area of smaller jug}}{125}=(16)/(36)](https://img.qammunity.org/2022/formulas/mathematics/college/kdmibsi1izkrjbrzmzkibgu9uyb70ox45d.png)
![\text{Area of smaller jug}=(4)/(9)* 125](https://img.qammunity.org/2022/formulas/mathematics/college/bbo6ksclpgdgwqf6toftytgc8v7s5fs9e2.png)
![\text{Area of smaller jug}\approx 55.56](https://img.qammunity.org/2022/formulas/mathematics/college/7wcbgu100wta0mhhf7ejdih00jc5mwr2zc.png)
Therefore, the area of the smaller jug is about 55.56 cm².