Answer:
the compressor power is -223.12 hP { -ve indicate work done }
Volumetric flow rate at exit = 262.74 ft³/s
Step-by-step explanation:
Given the data in the question;
p₁ = 14.2 psi = 0.978 bar
p₂ = 120 psi = 8.268 bar
T₁ = 60°F = 288.706 K
T₂ = 500°F = 533.15 K
Q₁ = 1200 ft³/min = 20ft³/s = 0.566 m³/s
δ₁ = p₁/RT₁ = 0.978 × 10⁵ / ( 287 × 288.706) = 1.18 kg/m³
δ₂ = P₂/RT₂ = 8.268 × 10⁵ / ( 287 × 533.15 ) = 5.4 kg/m³
so
ω₁ = δ₁Q₁ = 1.18 × 0.566 = 0.668 kg/s
we know that; ω₁ = ω₂ { in a steady flow }
ω₂ = δ₂Q₂
Q₂ = ω₂/δ₂
Q₂ = 0.668 / 5.4 = 0.1237 m³/s
Hence Volumetric flow rate at exit = 262.74 ft³/s
from the steady state energy equation;
ω( h₁ - h₂ ) = dW/dt
{ where h = CpT)
( Cp = 1.005 )
dW/dt = ωCp( T₁ - T₂ )
we substitute
dW/dt = 0.668 × 1.005( 288.706 - 533.15 )
dW/dt = 0.67134 × -244.444
dW/dt = -164.105 kW = -223.12 hP
Hence, the compressor power is -223.12 hP { -ve indicate work done }