Answer:
Explanation:
To solve this question, we can use either of the 2 below given methods:
- Rule of exponents
- Logarithms
1. Rule of Exponents:
![2 ^ { 7-2x } = ( 1 )/( 4 )\\\rightarrow 2 ^ { 7-2x } = ( 1 )/( 2^(2) )](https://img.qammunity.org/2023/formulas/mathematics/college/wfdeosmgpbztivyjtu1ymthqyswnfcjc5s.png)
Now, by using the law →
...
![2 ^ { 7-2x } = ( 1 )/( 2^(2) )\\2 ^ { 7-2x } = 2^(-2)](https://img.qammunity.org/2023/formulas/mathematics/college/unrtdg6zse2on3afuggx3zhbw9yn2f3f7m.png)
Now, let's take the exponential values as the base values are equal.
![7 - 2x = - 2\\- 2x = - 2 + (-7)\\- 2x = - 9\\\boxed{x = (9)/(2) = 4.5}](https://img.qammunity.org/2023/formulas/mathematics/college/lkycjap37qsltiaik7v2ii43i4pceiom09.png)
2. Logarithms:
![2 ^ { 7-2x } = ( 1 )/( 4 )\\\rightarrow2^(-2x+7)=(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/vsxxp4bp1qnx0q8ysvuhfxf8wf8mv5d1g6.png)
Now, take the logarithm of both the sides of the equation.
![\log(2^(-2x+7))=\log((1)/(4))](https://img.qammunity.org/2023/formulas/mathematics/college/kxnd8evxlkor65efqdwmd79k2gojcv5i81.png)
We know that, the logarithm of a number raised to an exponential power is power times the logarithm of the number. So,
![\log(2^(-2x+7))=\log((1)/(4)) \\ \rightarrow \left(-2x+7\right)\log(2)=\log((1)/(4))](https://img.qammunity.org/2023/formulas/mathematics/college/69yzjwhfyazcigyuehanxrhsd8epfn4dvg.png)
Now, divide both the sides of the equstion by log (2).
![-2x+7=(\log((1)/(4)))/(\log(2))](https://img.qammunity.org/2023/formulas/mathematics/college/vyri6mtv25z0r9paegv05iohh7433v9bk4.png)
According to the change of base formula,
=
. Then,
![-2x+7=\log_(2)\left((1)/(4)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/4760tvd5msrze3iqx01ds8xwcqxo6lzniy.png)
By subtracting 7 from both the sides of the equation & then simplifing it further....
![-2x=-2-7 \\-2x = - 9\\\boxed{x = (9)/(2) = 4.5}](https://img.qammunity.org/2023/formulas/mathematics/college/lvmrper2wttb05a56k2jcmvjt0u1p932e1.png)
- We get the same value by using either of the 2 methods.
- The value of x = 9/2 or 4.5
_____________
Hope it helps!
![\mathfrak{Lucazz}](https://img.qammunity.org/2023/formulas/mathematics/college/z91kjpkufi2wh9cp45v9rkgmrd7mwdhcu0.png)